कैलकुलस उदाहरण

प्रतिअवकलज ज्ञात कीजिये f(p)=8(p^2-2)^7(2p)
चरण 1
फलन को व्युत्पन्न का अनिश्चित समाकलन ज्ञात करके पता किया जा सकता है.
चरण 2
हल करने के लिए समाकलन सेट करें.
चरण 3
को से गुणा करें.
चरण 4
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 5
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
मान लें . ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
को अवकलित करें.
चरण 5.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 5.1.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 5.1.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 5.1.5
और जोड़ें.
चरण 5.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 6
और को मिलाएं.
चरण 7
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 8
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
और को मिलाएं.
चरण 8.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1
में से का गुणनखंड करें.
चरण 8.2.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 8.2.2.1
में से का गुणनखंड करें.
चरण 8.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 8.2.2.3
व्यंजक को फिर से लिखें.
चरण 8.2.2.4
को से विभाजित करें.
चरण 9
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 10
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
को के रूप में फिर से लिखें.
चरण 10.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.2.1
और को मिलाएं.
चरण 10.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 10.2.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 10.2.2.2
व्यंजक को फिर से लिखें.
चरण 10.2.3
को से गुणा करें.
चरण 11
की सभी घटनाओं को से बदलें.
चरण 12
उत्तर फलन का व्युत्पन्न है.