समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
चरण 1.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
चरण 1.1.2.1
सीमा का मूल्यांकन करें.
चरण 1.1.2.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.2.1.2
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.2.1.3
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 1.1.2.1.4
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 1.1.2.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.2.3
उत्तर को सरल करें.
चरण 1.1.2.3.1
पाइथागोरस सर्वसमिका लागू करें.
चरण 1.1.2.3.2
का सटीक मान है.
चरण 1.1.2.3.3
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 1.1.3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 1.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
चरण 1.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 1.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.4
का मान ज्ञात करें.
चरण 1.3.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.4.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.3.4.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.3.4.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.4.2.3
की सभी घटनाओं को से बदलें.
चरण 1.3.4.3
के संबंध में का व्युत्पन्न है.
चरण 1.3.4.4
को से गुणा करें.
चरण 1.3.4.5
को से गुणा करें.
चरण 1.3.5
सरल करें.
चरण 1.3.5.1
और जोड़ें.
चरण 1.3.5.2
और को पुन: क्रमित करें.
चरण 1.3.5.3
और को पुन: क्रमित करें.
चरण 1.3.5.4
ज्या दोहरा कोण सर्वसमिका लागू करें.
चरण 1.3.6
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.4
को से विभाजित करें.
चरण 2
चरण 2.1
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 2.2
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 4
चरण 4.1
को से गुणा करें.
चरण 4.2
का सटीक मान है.