कैलकुलस उदाहरण

सीमा का मूल्यांकन करें (cos(x)+sin(x))^(1/x) का लिमिट, जब x 0 की ओर एप्रोच करता हो
चरण 1
सीमा को सरल करने के लिए लघुगणक के गुणों का उपयोग करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
को के रूप में फिर से लिखें.
चरण 1.2
को लघुगणक के बाहर ले जाकर का प्रसार करें.
चरण 2
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
सीमा को घातांक में ले जाएँ.
चरण 2.2
और को मिलाएं.
चरण 3
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 3.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1
लघुगणक के अंदर की सीमा को स्थानांतरित करें.
चरण 3.1.2.2
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.1.2.3
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 3.1.2.4
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 3.1.2.5
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.5.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3.1.2.5.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3.1.2.6
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.6.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.6.1.1
का सटीक मान है.
चरण 3.1.2.6.1.2
का सटीक मान है.
चरण 3.1.2.6.2
और जोड़ें.
चरण 3.1.2.6.3
का प्राकृतिक लघुगणक है.
चरण 3.1.3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 3.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 3.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 3.3.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.3.2.2
के संबंध में का व्युत्पन्न है.
चरण 3.3.2.3
की सभी घटनाओं को से बदलें.
चरण 3.3.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.3.4
के संबंध में का व्युत्पन्न है.
चरण 3.3.5
के संबंध में का व्युत्पन्न है.
चरण 3.3.6
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.6.1
के गुणनखंडों को फिर से क्रमित करें.
चरण 3.3.6.2
वितरण गुणधर्म लागू करें.
चरण 3.3.6.3
और को मिलाएं.
चरण 3.3.6.4
और को मिलाएं.
चरण 3.3.6.5
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 3.3.6.6
में से का गुणनखंड करें.
चरण 3.3.6.7
में से का गुणनखंड करें.
चरण 3.3.6.8
में से का गुणनखंड करें.
चरण 3.3.6.9
को के रूप में फिर से लिखें.
चरण 3.3.6.10
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3.3.7
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.4
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 3.5
को से गुणा करें.
चरण 4
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 4.2
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 4.3
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 4.4
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 4.5
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 4.6
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 4.7
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 4.8
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 5
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 5.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 5.3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 5.4
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 6
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.1
का सटीक मान है.
चरण 6.1.2
का सटीक मान है.
चरण 6.1.3
को से गुणा करें.
चरण 6.1.4
में से घटाएं.
चरण 6.2
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
का सटीक मान है.
चरण 6.2.2
का सटीक मान है.
चरण 6.2.3
और जोड़ें.
चरण 6.3
को से विभाजित करें.
चरण 6.4
को से गुणा करें.
चरण 6.5
सरल करें.
चरण 7
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: