कैलकुलस उदाहरण

सीमा का मूल्यांकन करें (sin(-(pix)/2))/(2x) का लिमिट, जब x 0 की ओर एप्रोच करता हो
चरण 1
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 2
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 2.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1.1
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 2.1.2.1.2
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 2.1.2.1.3
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 2.1.2.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 2.1.2.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.3.1
को से गुणा करें.
चरण 2.1.2.3.2
को से गुणा करें.
चरण 2.1.2.3.3
का सटीक मान है.
चरण 2.1.3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 2.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 2.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 2.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 2.3.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.3.2.2
के संबंध में का व्युत्पन्न है.
चरण 2.3.2.3
की सभी घटनाओं को से बदलें.
चरण 2.3.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.4
और को मिलाएं.
चरण 2.3.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.6
को से गुणा करें.
चरण 2.3.7
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.7.1
चूँकि एक सम फलन है, को के रूप में फिर से लिखें.
चरण 2.3.7.2
गुणनखंडों को में पुन: क्रमित करें.
चरण 2.3.8
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.4
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 2.5
को से गुणा करें.
चरण 3
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 3.2
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 3.3
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 3.4
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 4
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 5
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
और को मिलाएं.
चरण 5.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 5.3
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
को से गुणा करें.
चरण 5.3.2
को से गुणा करें.
चरण 5.4
को से गुणा करें.
चरण 5.5
का सटीक मान है.
चरण 5.6
को से गुणा करें.
चरण 6
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: