समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
चरण 1.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
चरण 1.1.2.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.2.2
लघुगणक के अंदर की सीमा को स्थानांतरित करें.
चरण 1.1.2.3
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.2.4
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.2.5
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 1.1.2.6
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
चरण 1.1.2.6.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.2.6.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.2.7
उत्तर को सरल करें.
चरण 1.1.2.7.1
प्रत्येक पद को सरल करें.
चरण 1.1.2.7.1.1
और जोड़ें.
चरण 1.1.2.7.1.2
का प्राकृतिक लघुगणक है.
चरण 1.1.2.7.1.3
का सटीक मान है.
चरण 1.1.2.7.1.4
को से गुणा करें.
चरण 1.1.2.7.2
और जोड़ें.
चरण 1.1.3
भाजक की सीमा का मान ज्ञात करें.
चरण 1.1.3.1
जैसे ही की ओर आ रहा है, उत्पाद सीमा नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.3.2
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 1.1.3.3
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
चरण 1.1.3.3.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.3.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.3.4
उत्तर को सरल करें.
चरण 1.1.3.4.1
का सटीक मान है.
चरण 1.1.3.4.2
को से गुणा करें.
चरण 1.1.3.4.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.3.5
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 1.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
चरण 1.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 1.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.3
का मान ज्ञात करें.
चरण 1.3.3.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.3.3.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.3.3.1.2
के संबंध में का व्युत्पन्न है.
चरण 1.3.3.1.3
की सभी घटनाओं को से बदलें.
चरण 1.3.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.3.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3.5
और जोड़ें.
चरण 1.3.3.6
को से गुणा करें.
चरण 1.3.4
का मान ज्ञात करें.
चरण 1.3.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.4.2
के संबंध में का व्युत्पन्न है.
चरण 1.3.5
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.3.6
के संबंध में का व्युत्पन्न है.
चरण 1.3.7
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.8
को से गुणा करें.
चरण 2
चरण 2.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
चरण 2.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 2.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
चरण 2.1.2.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.1.2.2
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.1.2.3
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 2.1.2.4
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.1.2.5
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 2.1.2.6
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 2.1.2.7
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
चरण 2.1.2.7.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 2.1.2.7.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 2.1.2.8
उत्तर को सरल करें.
चरण 2.1.2.8.1
प्रत्येक पद को सरल करें.
चरण 2.1.2.8.1.1
और जोड़ें.
चरण 2.1.2.8.1.2
को से विभाजित करें.
चरण 2.1.2.8.1.3
का सटीक मान है.
चरण 2.1.2.8.1.4
को से गुणा करें.
चरण 2.1.2.8.2
में से घटाएं.
चरण 2.1.3
भाजक की सीमा का मान ज्ञात करें.
चरण 2.1.3.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.1.3.2
जैसे ही की ओर आ रहा है, उत्पाद सीमा नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.1.3.3
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 2.1.3.4
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 2.1.3.5
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
चरण 2.1.3.5.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 2.1.3.5.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 2.1.3.5.3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 2.1.3.6
उत्तर को सरल करें.
चरण 2.1.3.6.1
प्रत्येक पद को सरल करें.
चरण 2.1.3.6.1.1
का सटीक मान है.
चरण 2.1.3.6.1.2
को से गुणा करें.
चरण 2.1.3.6.1.3
का सटीक मान है.
चरण 2.1.3.6.2
और जोड़ें.
चरण 2.1.3.6.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 2.1.3.7
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 2.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 2.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 2.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
चरण 2.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 2.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.3
का मान ज्ञात करें.
चरण 2.3.3.1
को के रूप में फिर से लिखें.
चरण 2.3.3.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.3.3.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.3.3.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.3.2.3
की सभी घटनाओं को से बदलें.
चरण 2.3.3.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.3.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.3.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.3.6
और जोड़ें.
चरण 2.3.3.7
को से गुणा करें.
चरण 2.3.4
का मान ज्ञात करें.
चरण 2.3.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.4.2
के संबंध में का व्युत्पन्न है.
चरण 2.3.4.3
को से गुणा करें.
चरण 2.3.4.4
को से गुणा करें.
चरण 2.3.5
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 2.3.6
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.7
का मान ज्ञात करें.
चरण 2.3.7.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.3.7.2
के संबंध में का व्युत्पन्न है.
चरण 2.3.7.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.7.4
को से गुणा करें.
चरण 2.3.8
के संबंध में का व्युत्पन्न है.
चरण 2.3.9
सरल करें.
चरण 2.3.9.1
और जोड़ें.
चरण 2.3.9.2
पदों को पुन: व्यवस्थित करें
चरण 3
चरण 3.1
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.2
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.3
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.4
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 3.5
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 3.6
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.7
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 3.8
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 3.9
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.10
जैसे ही की ओर आ रहा है, उत्पाद सीमा नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.11
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 3.12
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 3.13
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 4
चरण 4.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 4.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 4.3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 4.4
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 4.5
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 5
चरण 5.1
Multiply the numerator and denominator of the fraction by .
चरण 5.1.1
को से गुणा करें.
चरण 5.1.2
जोड़ना.
चरण 5.2
वितरण गुणधर्म लागू करें.
चरण 5.3
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 5.3.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.3
व्यंजक को फिर से लिखें.
चरण 5.4
न्यूमेरेटर को सरल करें.
चरण 5.4.1
और जोड़ें.
चरण 5.4.2
एक का कोई भी घात एक होता है.
चरण 5.4.3
को से गुणा करें.
चरण 5.4.4
का सटीक मान है.
चरण 5.4.5
और जोड़ें.
चरण 5.5
भाजक को सरल करें.
चरण 5.5.1
और जोड़ें.
चरण 5.5.2
एक का कोई भी घात एक होता है.
चरण 5.5.3
को से गुणा करें.
चरण 5.5.4
का सटीक मान है.
चरण 5.5.5
को से गुणा करें.
चरण 5.5.6
और जोड़ें.
चरण 5.5.7
एक का कोई भी घात एक होता है.
चरण 5.5.8
को से गुणा करें.
चरण 5.5.9
का सटीक मान है.
चरण 5.5.10
को से गुणा करें.
चरण 5.5.11
और जोड़ें.
चरण 5.6
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 6
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: