कैलकुलस उदाहरण

सीमा का मूल्यांकन करें x)/(1+cos(3pix)) के प्राकृतिक लघुगणक (1-x+ का लिमिट जब x 1 की ओर एप्रोच कर रहा हो
चरण 1
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.2.2
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.2.3
लघुगणक के अंदर की सीमा को स्थानांतरित करें.
चरण 1.1.2.4
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.4.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.2.4.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.2.5
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.5.1
का प्राकृतिक लघुगणक है.
चरण 1.1.2.5.2
में से घटाएं.
चरण 1.1.2.5.3
और जोड़ें.
चरण 1.1.3
भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.3.1.2
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.3.1.3
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 1.1.3.1.4
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.1.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.3.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.3.1.1
को से गुणा करें.
चरण 1.1.3.3.1.2
का पूरा घुमाव घटाएं जब तक कि कोण से बड़ा या उसके बराबर और से कम न हो जाए.
चरण 1.1.3.3.1.3
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक बनाएंं क्योंकि दूसरे चतुर्थांश में कोज्या ऋणात्मक है.
चरण 1.1.3.3.1.4
का सटीक मान है.
चरण 1.1.3.3.1.5
को से गुणा करें.
चरण 1.1.3.3.2
में से घटाएं.
चरण 1.1.3.3.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 1.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 1.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.4
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.4.3
को से गुणा करें.
चरण 1.3.5
के संबंध में का व्युत्पन्न है.
चरण 1.3.6
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.6.1
में से घटाएं.
चरण 1.3.6.2
पदों को पुन: व्यवस्थित करें
चरण 1.3.7
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.8
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.9
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.9.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.3.9.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.3.9.1.2
के संबंध में का व्युत्पन्न है.
चरण 1.3.9.1.3
की सभी घटनाओं को से बदलें.
चरण 1.3.9.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.9.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.9.4
को से गुणा करें.
चरण 1.3.9.5
को से गुणा करें.
चरण 1.3.10
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.10.1
में से घटाएं.
चरण 1.3.10.2
के गुणनखंडों को फिर से क्रमित करें.
चरण 1.4
पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.4.2
और को मिलाएं.
चरण 1.4.3
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 2.2
सीमा तर्क को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 2.2.2
को से गुणा करें.
चरण 3
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 3.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.1.2.2
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 3.1.2.3
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.3.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3.1.2.3.2
में से घटाएं.
चरण 3.1.3
भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.3.1
जैसे ही की ओर आ रहा है, उत्पाद सीमा नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.1.3.2
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 3.1.3.3
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 3.1.3.4
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.3.4.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3.1.3.4.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3.1.3.5
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.3.5.1
को से गुणा करें.
चरण 3.1.3.5.2
को से गुणा करें.
चरण 3.1.3.5.3
का पूरा घुमाव घटाएं जब तक कि कोण से बड़ा या उसके बराबर और से कम न हो जाए.
चरण 3.1.3.5.4
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें.
चरण 3.1.3.5.5
का सटीक मान है.
चरण 3.1.3.5.6
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 3.1.3.6
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 3.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 3.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 3.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 3.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.3.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.4
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.3.4.3
को से गुणा करें.
चरण 3.3.5
में से घटाएं.
चरण 3.3.6
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 3.3.7
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 3.3.7.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.3.7.2
के संबंध में का व्युत्पन्न है.
चरण 3.3.7.3
की सभी घटनाओं को से बदलें.
चरण 3.3.8
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.9
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.3.10
को से गुणा करें.
चरण 3.3.11
को के बाईं ओर ले जाएं.
चरण 3.3.12
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.3.13
को से गुणा करें.
चरण 3.3.14
पदों को पुन: व्यवस्थित करें
चरण 4
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 4.2
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 4.3
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 4.4
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 4.5
जैसे ही की ओर आ रहा है, उत्पाद सीमा नियम का उपयोग करके सीमा को विभाजित करें.
चरण 4.6
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 4.7
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 4.8
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 4.9
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 5
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 5.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 5.3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 6
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 6.2
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
को से गुणा करें.
चरण 6.2.2
को से गुणा करें.
चरण 6.2.3
का पूरा घुमाव घटाएं जब तक कि कोण से बड़ा या उसके बराबर और से कम न हो जाए.
चरण 6.2.4
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक बनाएंं क्योंकि दूसरे चतुर्थांश में कोज्या ऋणात्मक है.
चरण 6.2.5
का सटीक मान है.
चरण 6.2.6
को से गुणा करें.
चरण 6.2.7
को से गुणा करें.
चरण 6.2.8
को से गुणा करें.
चरण 6.2.9
का पूरा घुमाव घटाएं जब तक कि कोण से बड़ा या उसके बराबर और से कम न हो जाए.
चरण 6.2.10
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें.
चरण 6.2.11
का सटीक मान है.
चरण 6.2.12
और जोड़ें.
चरण 6.3
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 6.4
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.4.1
को से गुणा करें.
चरण 6.4.2
को से गुणा करें.
चरण 6.4.3
को के घात तक बढ़ाएं.
चरण 6.4.4
को के घात तक बढ़ाएं.
चरण 6.4.5
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 6.4.6
और जोड़ें.
चरण 7
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: