कैलकुलस उदाहरण

चरण 1
समीकरण के दोनों पक्षों का अवकलन करें.
चरण 2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3
समीकरण के दाएं पक्ष का अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.2.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.2.2.3
की सभी घटनाओं को से बदलें.
चरण 3.2.3
को के रूप में फिर से लिखें.
चरण 3.2.4
और को मिलाएं.
चरण 3.2.5
और को मिलाएं.
चरण 3.2.6
और को मिलाएं.
चरण 3.2.7
को के बाईं ओर ले जाएं.
चरण 3.2.8
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.8.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.8.2
को से विभाजित करें.
चरण 3.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.3.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.3.2.3
की सभी घटनाओं को से बदलें.
चरण 3.3.3
को के रूप में फिर से लिखें.
चरण 3.3.4
को से गुणा करें.
चरण 3.4
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.4.2
को के रूप में फिर से लिखें.
चरण 3.5
स्थिरांक नियम का उपयोग करके अंतर करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.5.2
और जोड़ें.
चरण 4
बाईं ओर को दाईं ओर के बराबर सेट करके समीकरण को सुधारें.
चरण 5
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
समीकरण को के रूप में फिर से लिखें.
चरण 5.2
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
में से का गुणनखंड करें.
चरण 5.2.2
में से का गुणनखंड करें.
चरण 5.2.3
में से का गुणनखंड करें.
चरण 5.2.4
में से का गुणनखंड करें.
चरण 5.2.5
में से का गुणनखंड करें.
चरण 5.3
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 5.3.1.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 5.3.2
अनावश्यक कोष्ठक हटा दें.
चरण 5.4
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.4.2.1.2
व्यंजक को फिर से लिखें.
चरण 5.4.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.2.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.4.2.2.2
को से विभाजित करें.
चरण 6
को से बदलें.