कैलकुलस उदाहरण

सीमा का मूल्यांकन करें (x^4)/(4^x) का लिमिट, जब x infinity की ओर एप्रोच करता हो
चरण 1
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.1.2
एक बहुपद की अनंत की सीमा जिसका प्रमुख गुणांक धनात्मक है, अनंत है.
चरण 1.1.3
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.
चरण 1.1.4
अनंत से विभाजित अनंत परिणाम अपरिभाषित होता है.
अपरिभाषित
चरण 1.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 1.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 3
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 3.1.2
एक बहुपद की अनंत की सीमा जिसका प्रमुख गुणांक धनात्मक है, अनंत है.
चरण 3.1.3
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.
चरण 3.1.4
अनंत से विभाजित अनंत परिणाम अपरिभाषित होता है.
अपरिभाषित
चरण 3.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 3.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 3.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.3.3
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 4
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 5
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 5.1.2
एक बहुपद की अनंत की सीमा जिसका प्रमुख गुणांक धनात्मक है, अनंत है.
चरण 5.1.3
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.
चरण 5.1.4
अनंत से विभाजित अनंत परिणाम अपरिभाषित होता है.
अपरिभाषित
चरण 5.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 5.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 5.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 5.3.3
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 6
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 7
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 7.1.2
एक बहुपद की अनंत की सीमा जिसका प्रमुख गुणांक धनात्मक है, अनंत है.
चरण 7.1.3
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.
चरण 7.1.4
अनंत से विभाजित अनंत परिणाम अपरिभाषित होता है.
अपरिभाषित
चरण 7.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 7.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 7.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 7.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 7.3.3
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 8
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 9
चूँकि इसका न्यूमेरेटर एक वास्तविक संख्या तक पहुँचता है, जबकि इसका भाजक असीम होता है, इसलिए भिन्न के करीब पहुंच जाता है.
चरण 10
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
को के रूप में फिर से लिखें.
चरण 10.2
को लघुगणक के बाहर ले जाकर का प्रसार करें.
चरण 10.3
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 10.3.1
में से का गुणनखंड करें.
चरण 10.3.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 10.3.2.1
में से का गुणनखंड करें.
चरण 10.3.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 10.3.2.3
व्यंजक को फिर से लिखें.
चरण 10.4
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 10.4.1
को से गुणा करें.
चरण 10.4.2
को से गुणा करें.
चरण 10.5
को के रूप में फिर से लिखें.
चरण 10.6
को लघुगणक के बाहर ले जाकर का प्रसार करें.
चरण 10.7
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 10.7.1
में से का गुणनखंड करें.
चरण 10.7.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 10.7.2.1
में से का गुणनखंड करें.
चरण 10.7.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 10.7.2.3
व्यंजक को फिर से लिखें.
चरण 10.8
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.8.1
को के घात तक बढ़ाएं.
चरण 10.8.2
को के घात तक बढ़ाएं.
चरण 10.8.3
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 10.8.4
और जोड़ें.
चरण 10.9
जोड़ना.
चरण 10.10
जोड़ना.
चरण 10.11
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.11.1
को से गुणा करें.
चरण 10.11.2
को से गुणा करें.
चरण 10.12
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.12.1
को के घात तक बढ़ाएं.
चरण 10.12.2
को के घात तक बढ़ाएं.
चरण 10.12.3
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 10.12.4
और जोड़ें.
चरण 10.13
को से गुणा करें.