कैलकुलस उदाहरण

चरण 1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
में से का गुणनखंड करें.
चरण 1.2
को के घात तक बढ़ाएं.
चरण 1.3
में से का गुणनखंड करें.
चरण 1.4
में से का गुणनखंड करें.
चरण 2
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 2.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
के लिए LCM (लघुत्तम समापवर्तक) का मान ज्ञात करने के चरण हैं:
1. सांख्यिक भाग के लिए LCM ज्ञात कीजिए.
2. चर भाग के लिए LCM ज्ञात कीजिए.
3. यौगिक चर भाग के लिए LCM ज्ञात कीजिए
4. प्रत्येक LCM को एक साथ गुणा करें.
चरण 2.3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 2.4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 2.5
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 2.6
का गुणनखंड ही है.
बार आता है.
चरण 2.7
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 2.8
का गुणनखंड ही है.
बार आता है.
चरण 2.9
का LCM (न्यूनतम सामान्य गुणक) सभी गुणनखंडों को किसी भी पद में सबसे बड़ी संख्या में गुणा करने का परिणाम है.
चरण 2.10
कुछ संख्याओं का लघुत्तम समापवर्तक वह सबसे छोटी संख्या होती है, जिसके गुणनखंड होते हैं.
चरण 3
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के प्रत्येक पद को से गुणा करें.
चरण 3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1.1
में से का गुणनखंड करें.
चरण 3.2.1.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.1.3
व्यंजक को फिर से लिखें.
चरण 3.2.1.2
को के घात तक बढ़ाएं.
चरण 3.2.1.3
को के घात तक बढ़ाएं.
चरण 3.2.1.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 3.2.1.5
और जोड़ें.
चरण 3.2.1.6
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.6.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.6.2
व्यंजक को फिर से लिखें.
चरण 3.2.1.7
वितरण गुणधर्म लागू करें.
चरण 3.2.1.8
को से गुणा करें.
चरण 3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.1.2
व्यंजक को फिर से लिखें.
चरण 4
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.2
में से घटाएं.
चरण 4.3
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 4.3.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 4.4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 4.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.5.1
को के बराबर सेट करें.
चरण 4.5.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.6.1
को के बराबर सेट करें.
चरण 4.6.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 5
उन हलों को छोड़ दें जो को सत्य नहीं बनाते हैं.