कैलकुलस उदाहरण

विशेष बिन्दु ज्ञात कीजिये f(x)=7x^3-6x^2+1
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.3
को से गुणा करें.
चरण 1.1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.3
को से गुणा करें.
चरण 1.1.4
स्थिरांक नियम का उपयोग करके अंतर करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.4.2
और जोड़ें.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
में से का गुणनखंड करें.
चरण 2.2.2
में से का गुणनखंड करें.
चरण 2.2.3
में से का गुणनखंड करें.
चरण 2.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.4
को के बराबर सेट करें.
चरण 2.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
को के बराबर सेट करें.
चरण 2.5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.5.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.5.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.5.2.2.2.1.2
को से विभाजित करें.
चरण 2.6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 3.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 4
प्रत्येक मान पर का मूल्यांकन करें जहां व्युत्पन्न या अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
को से प्रतिस्थापित करें.
चरण 4.1.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 4.1.2.1.2
को से गुणा करें.
चरण 4.1.2.1.3
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 4.1.2.1.4
को से गुणा करें.
चरण 4.1.2.2
संख्याओं को जोड़कर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.2.1
और जोड़ें.
चरण 4.1.2.2.2
और जोड़ें.
चरण 4.2
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
को से प्रतिस्थापित करें.
चरण 4.2.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.1
उत्पाद नियम को पर लागू करें.
चरण 4.2.2.1.2
को के घात तक बढ़ाएं.
चरण 4.2.2.1.3
को के घात तक बढ़ाएं.
चरण 4.2.2.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.4.1
में से का गुणनखंड करें.
चरण 4.2.2.1.4.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.2.1.4.3
व्यंजक को फिर से लिखें.
चरण 4.2.2.1.5
उत्पाद नियम को पर लागू करें.
चरण 4.2.2.1.6
को के घात तक बढ़ाएं.
चरण 4.2.2.1.7
को के घात तक बढ़ाएं.
चरण 4.2.2.1.8
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.8.1
और को मिलाएं.
चरण 4.2.2.1.8.2
को से गुणा करें.
चरण 4.2.2.1.9
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4.2.2.2
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.2.1
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 4.2.2.2.2
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.2.2.1
में से घटाएं.
चरण 4.2.2.2.2.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4.2.2.2.2.3
एक सामान्य भाजक के साथ को भिन्न के रूप में लिखें.
चरण 4.2.2.2.2.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 4.2.2.2.2.5
में से घटाएं.
चरण 4.3
सभी बिंदुओं को सूचीबद्ध करें.
चरण 5