कैलकुलस उदाहरण

क्षैतिज स्पर्श रेखा ज्ञात कीजिये f(x)=(x-1)(x^2-8x+7)
चरण 1
व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.5
को से गुणा करें.
चरण 1.2.6
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.7
और जोड़ें.
चरण 1.2.8
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2.9
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.10
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.11
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.11.1
और जोड़ें.
चरण 1.2.11.2
को से गुणा करें.
चरण 1.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
वितरण गुणधर्म लागू करें.
चरण 1.3.2
वितरण गुणधर्म लागू करें.
चरण 1.3.3
वितरण गुणधर्म लागू करें.
चरण 1.3.4
पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 1.3.4.1
को के घात तक बढ़ाएं.
चरण 1.3.4.2
को के घात तक बढ़ाएं.
चरण 1.3.4.3
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.3.4.4
और जोड़ें.
चरण 1.3.4.5
को से गुणा करें.
चरण 1.3.4.6
को के बाईं ओर ले जाएं.
चरण 1.3.4.7
को से गुणा करें.
चरण 1.3.4.8
में से घटाएं.
चरण 1.3.4.9
और जोड़ें.
चरण 1.3.4.10
में से घटाएं.
चरण 1.3.4.11
और जोड़ें.
चरण 2
व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1.1
में से का गुणनखंड करें.
चरण 2.1.1.2
में से का गुणनखंड करें.
चरण 2.1.1.3
में से का गुणनखंड करें.
चरण 2.1.1.4
में से का गुणनखंड करें.
चरण 2.1.1.5
में से का गुणनखंड करें.
चरण 2.1.2
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 2.1.2.1.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 2.1.2.2
अनावश्यक कोष्ठक हटा दें.
चरण 2.2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.3
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
को के बराबर सेट करें.
चरण 2.3.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
को के बराबर सेट करें.
चरण 2.4.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3
मूल फलन को मान के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
व्यंजक में चर को से बदलें.
चरण 3.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
में से घटाएं.
चरण 3.2.2
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
को के घात तक बढ़ाएं.
चरण 3.2.2.2
को से गुणा करें.
चरण 3.2.3
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.3.1
में से घटाएं.
चरण 3.2.3.2
और जोड़ें.
चरण 3.2.3.3
को से गुणा करें.
चरण 3.2.4
अंतिम उत्तर है.
चरण 4
मूल फलन को मान के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
व्यंजक में चर को से बदलें.
चरण 4.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
में से घटाएं.
चरण 4.2.2
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
एक का कोई भी घात एक होता है.
चरण 4.2.2.2
को से गुणा करें.
चरण 4.2.3
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.3.1
में से घटाएं.
चरण 4.2.3.2
और जोड़ें.
चरण 4.2.3.3
को से गुणा करें.
चरण 4.2.4
अंतिम उत्तर है.
चरण 5
फलन पर क्षैतिज स्पर्शरेखाएं हैं.
चरण 6