समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
अवकलन करें.
चरण 1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2
का मान ज्ञात करें.
चरण 1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3
को से गुणा करें.
चरण 2
चरण 2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.2.2
बाईं ओर को सरल बनाएंं.
चरण 2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.2.1.2
को से विभाजित करें.
चरण 2.2.3
दाईं ओर को सरल बनाएंं.
चरण 2.2.3.1
को से विभाजित करें.
चरण 2.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 2.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 2.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 2.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 2.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3
चरण 3.1
व्यंजक में चर को से बदलें.
चरण 3.2
परिणाम को सरल बनाएंं.
चरण 3.2.1
प्रत्येक पद को सरल करें.
चरण 3.2.1.1
को के रूप में फिर से लिखें.
चरण 3.2.1.2
को के घात तक बढ़ाएं.
चरण 3.2.1.3
को के रूप में फिर से लिखें.
चरण 3.2.1.3.1
में से का गुणनखंड करें.
चरण 3.2.1.3.2
को के रूप में फिर से लिखें.
चरण 3.2.1.4
करणी से पदों को बाहर निकालें.
चरण 3.2.2
में से घटाएं.
चरण 3.2.3
अंतिम उत्तर है.
चरण 4
चरण 4.1
व्यंजक में चर को से बदलें.
चरण 4.2
परिणाम को सरल बनाएंं.
चरण 4.2.1
प्रत्येक पद को सरल करें.
चरण 4.2.1.1
उत्पाद नियम को पर लागू करें.
चरण 4.2.1.2
को के घात तक बढ़ाएं.
चरण 4.2.1.3
को के रूप में फिर से लिखें.
चरण 4.2.1.4
को के घात तक बढ़ाएं.
चरण 4.2.1.5
को के रूप में फिर से लिखें.
चरण 4.2.1.5.1
में से का गुणनखंड करें.
चरण 4.2.1.5.2
को के रूप में फिर से लिखें.
चरण 4.2.1.6
करणी से पदों को बाहर निकालें.
चरण 4.2.1.7
को से गुणा करें.
चरण 4.2.1.8
को से गुणा करें.
चरण 4.2.2
और जोड़ें.
चरण 4.2.3
अंतिम उत्तर है.
चरण 5
फलन पर क्षैतिज स्पर्शरेखाएं हैं.
चरण 6