कैलकुलस उदाहरण

क्षैतिज स्पर्श रेखा ज्ञात कीजिये f(x)=x+2sin(x)
चरण 1
व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
के संबंध में का व्युत्पन्न है.
चरण 2
व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.2.1.2
को से विभाजित करें.
चरण 2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.3
कोज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम कोज्या लें.
चरण 2.4
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
का सटीक मान है.
चरण 2.5
दूसरे और तीसरे चतुर्थांश में कोज्या फलन ऋणात्मक होता है. दूसरा हल ज्ञात करने के लिए, तीसरे चतुर्थांश में हल ज्ञात करने के लिए संदर्भ कोण को से घटाएं.
चरण 2.6
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 2.6.2
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.1
और को मिलाएं.
चरण 2.6.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2.6.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.3.1
को से गुणा करें.
चरण 2.6.3.2
में से घटाएं.
चरण 2.7
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.7.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 2.7.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 2.7.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 2.7.4
को से विभाजित करें.
चरण 2.8
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 3
मूल फलन को मान के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
व्यंजक में चर को से बदलें.
चरण 3.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.1
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें.
चरण 3.2.1.2
का सटीक मान है.
चरण 3.2.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.3.2
व्यंजक को फिर से लिखें.
चरण 3.2.2
अंतिम उत्तर है.
चरण 4
मूल फलन को मान के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
व्यंजक में चर को से बदलें.
चरण 4.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1.1
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक बनाएंं क्योंकि तीसरे चतुर्थांश में ज्या ऋणात्मक है.
चरण 4.2.1.2
का सटीक मान है.
चरण 4.2.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1.3.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 4.2.1.3.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.1.3.3
व्यंजक को फिर से लिखें.
चरण 4.2.2
अंतिम उत्तर है.
चरण 5
फलन पर क्षैतिज स्पर्शरेखाएं हैं.
चरण 6