समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
पहला व्युत्पन्न पता करें.
चरण 1.1.1
अवकलन करें.
चरण 1.1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2
का मान ज्ञात करें.
चरण 1.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2
को के रूप में फिर से लिखें.
चरण 1.1.2.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.4
को से गुणा करें.
चरण 1.1.3
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 1.1.4
सरल करें.
चरण 1.1.4.1
पदों को मिलाएं.
चरण 1.1.4.1.1
और को मिलाएं.
चरण 1.1.4.1.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.1.4.2
पदों को पुन: व्यवस्थित करें
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.3
समीकरण के पदों का LCD पता करें.
चरण 2.3.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 2.3.2
एक और किसी भी व्यंजक का LCM (लघुत्तम समापवर्तक) व्यंजक है.
चरण 2.4
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
चरण 2.4.1
के प्रत्येक पद को से गुणा करें.
चरण 2.4.2
बाईं ओर को सरल बनाएंं.
चरण 2.4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.2.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 2.4.2.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.2.1.3
व्यंजक को फिर से लिखें.
चरण 2.5
समीकरण को हल करें.
चरण 2.5.1
समीकरण को के रूप में फिर से लिखें.
चरण 2.5.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 2.5.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.5.2.2
बाईं ओर को सरल बनाएंं.
चरण 2.5.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 2.5.2.2.2
को से विभाजित करें.
चरण 2.5.2.3
दाईं ओर को सरल बनाएंं.
चरण 2.5.2.3.1
को से विभाजित करें.
चरण 2.5.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 2.5.4
को सरल करें.
चरण 2.5.4.1
को के रूप में फिर से लिखें.
चरण 2.5.4.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 2.5.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 2.5.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 2.5.5.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 2.5.5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3
वे मान जो व्युत्पन्न को के बराबर बनाते हैं, वे हैं.
चरण 4
चरण 4.1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 4.2
के लिए हल करें.
चरण 4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 4.2.2
को सरल करें.
चरण 4.2.2.1
को के रूप में फिर से लिखें.
चरण 4.2.2.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 4.2.2.3
जोड़ या घटाव , है.
चरण 5
को मानों के आस-पास अलग-अलग अंतराल में विभाजित करें जो व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 6
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
चरण 6.2.1
को के घात तक बढ़ाएं.
चरण 6.2.2
एक सामान्य भाजक के साथ को भिन्न के रूप में लिखें.
चरण 6.2.3
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 6.2.4
और जोड़ें.
चरण 6.2.5
अंतिम उत्तर है.
चरण 6.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 7
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
चरण 7.2.1
प्रत्येक पद को सरल करें.
चरण 7.2.1.1
भाजक को सरल करें.
चरण 7.2.1.1.1
उत्पाद नियम को पर लागू करें.
चरण 7.2.1.1.2
को के घात तक बढ़ाएं.
चरण 7.2.1.1.3
उत्पाद नियम को पर लागू करें.
चरण 7.2.1.1.4
को के घात तक बढ़ाएं.
चरण 7.2.1.1.5
को के घात तक बढ़ाएं.
चरण 7.2.1.1.6
को से गुणा करें.
चरण 7.2.1.2
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 7.2.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 7.2.1.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 7.2.1.3.2
व्यंजक को फिर से लिखें.
चरण 7.2.1.4
को से गुणा करें.
चरण 7.2.2
और जोड़ें.
चरण 7.2.3
अंतिम उत्तर है.
चरण 7.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 8
चरण 8.1
व्यंजक में चर को से बदलें.
चरण 8.2
परिणाम को सरल बनाएंं.
चरण 8.2.1
प्रत्येक पद को सरल करें.
चरण 8.2.1.1
भाजक को सरल करें.
चरण 8.2.1.1.1
उत्पाद नियम को पर लागू करें.
चरण 8.2.1.1.2
को के घात तक बढ़ाएं.
चरण 8.2.1.1.3
को के घात तक बढ़ाएं.
चरण 8.2.1.2
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 8.2.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 8.2.1.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 8.2.1.3.2
व्यंजक को फिर से लिखें.
चरण 8.2.1.4
को से गुणा करें.
चरण 8.2.2
और जोड़ें.
चरण 8.2.3
अंतिम उत्तर है.
चरण 8.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 9
चरण 9.1
व्यंजक में चर को से बदलें.
चरण 9.2
परिणाम को सरल बनाएंं.
चरण 9.2.1
को के घात तक बढ़ाएं.
चरण 9.2.2
व्यंजक को सरल बनाएंं.
चरण 9.2.2.1
एक सामान्य भाजक के साथ को भिन्न के रूप में लिखें.
चरण 9.2.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 9.2.2.3
और जोड़ें.
चरण 9.2.3
अंतिम उत्तर है.
चरण 9.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 10
उन अंतरालों की सूची बनाइए जिन पर फलन बढ़ रहा है और घट रहा है.
बढ़ रहा है:
इस पर घटता हुआ:
चरण 11