समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.2
के संबंध में का व्युत्पन्न है.
चरण 1.1.3
की सभी घटनाओं को से बदलें.
चरण 1.2
अवकलन करें.
चरण 1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.4
को से गुणा करें.
चरण 1.2.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.6
न्यूमेरेटरों को जोड़ें.
चरण 1.2.6.1
और जोड़ें.
चरण 1.2.6.2
और को मिलाएं.
चरण 2
चरण 2.1
अचर उत्पाद नियम का उपयोग करके अवकलन करें.
चरण 2.1.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.2
को के रूप में फिर से लिखें.
चरण 2.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.3
की सभी घटनाओं को से बदलें.
चरण 2.3
अवकलन करें.
चरण 2.3.1
को से गुणा करें.
चरण 2.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.5
को से गुणा करें.
चरण 2.3.6
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.7
व्यंजक को सरल बनाएंं.
चरण 2.3.7.1
और जोड़ें.
चरण 2.3.7.2
को से गुणा करें.
चरण 2.4
सरल करें.
चरण 2.4.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 2.4.2
पदों को मिलाएं.
चरण 2.4.2.1
और को मिलाएं.
चरण 2.4.2.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3
चरण 3.1
अचर उत्पाद नियम का उपयोग करके अवकलन करें.
चरण 3.1.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.1.2
घातांक के बुनियादी नियम लागू करें.
चरण 3.1.2.1
को के रूप में फिर से लिखें.
चरण 3.1.2.2
घातांक को में गुणा करें.
चरण 3.1.2.2.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.1.2.2.2
को से गुणा करें.
चरण 3.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 3.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.2.3
की सभी घटनाओं को से बदलें.
चरण 3.3
अवकलन करें.
चरण 3.3.1
को से गुणा करें.
चरण 3.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.3.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.3.5
को से गुणा करें.
चरण 3.3.6
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.7
व्यंजक को सरल बनाएंं.
चरण 3.3.7.1
और जोड़ें.
चरण 3.3.7.2
को से गुणा करें.
चरण 3.4
सरल करें.
चरण 3.4.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 3.4.2
और को मिलाएं.
चरण 4
चरण 4.1
अचर उत्पाद नियम का उपयोग करके अवकलन करें.
चरण 4.1.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2
घातांक के बुनियादी नियम लागू करें.
चरण 4.1.2.1
को के रूप में फिर से लिखें.
चरण 4.1.2.2
घातांक को में गुणा करें.
चरण 4.1.2.2.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 4.1.2.2.2
को से गुणा करें.
चरण 4.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 4.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 4.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.2.3
की सभी घटनाओं को से बदलें.
चरण 4.3
अवकलन करें.
चरण 4.3.1
को से गुणा करें.
चरण 4.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.3.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.3.5
को से गुणा करें.
चरण 4.3.6
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.3.7
व्यंजक को सरल बनाएंं.
चरण 4.3.7.1
और जोड़ें.
चरण 4.3.7.2
को से गुणा करें.
चरण 4.4
सरल करें.
चरण 4.4.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 4.4.2
पदों को मिलाएं.
चरण 4.4.2.1
और को मिलाएं.
चरण 4.4.2.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 5
के संबंध में का चौथा व्युत्पन्न है.