कैलकुलस उदाहरण

बिंदु पर स्पर्श रेखा ज्ञात कीजिये। (x^2+4)y=8 , (2,1)
,
चरण 1
स्पर्शरेखा का ढलान ज्ञात करने के लिए पहला व्युत्पन्न ज्ञात करें और और पर मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
समीकरण के दोनों पक्षों का अवकलन करें.
चरण 1.2
समीकरण के बाएँ पक्ष का अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.2.2
को के रूप में फिर से लिखें.
चरण 1.2.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.6
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.6.1
और जोड़ें.
चरण 1.2.6.2
को के बाईं ओर ले जाएं.
चरण 1.2.7
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.7.1
वितरण गुणधर्म लागू करें.
चरण 1.2.7.2
पदों को पुन: व्यवस्थित करें
चरण 1.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.4
बाईं ओर को दाईं ओर के बराबर सेट करके समीकरण को सुधारें.
चरण 1.5
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.5.2
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.2.1
में से का गुणनखंड करें.
चरण 1.5.2.2
में से का गुणनखंड करें.
चरण 1.5.2.3
में से का गुणनखंड करें.
चरण 1.5.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.5.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.5.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.5.3.2.1.2
को से विभाजित करें.
चरण 1.5.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.5.3.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.6
को से बदलें.
चरण 1.7
और पर मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.7.1
व्यंजक में चर को से बदलें.
चरण 1.7.2
व्यंजक में चर को से बदलें.
चरण 1.7.3
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.7.3.1
को के घात तक बढ़ाएं.
चरण 1.7.3.2
और जोड़ें.
चरण 1.7.4
सामान्य गुणनखंडों को रद्द करके व्यंजक को छोटा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.7.4.1
को से गुणा करें.
चरण 1.7.4.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.7.4.2.1
में से का गुणनखंड करें.
चरण 1.7.4.2.2
में से का गुणनखंड करें.
चरण 1.7.4.2.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.7.4.2.4
व्यंजक को फिर से लिखें.
चरण 1.7.4.3
को के रूप में फिर से लिखें.
चरण 2
ढलान और बिंदु मानों को पॉइंट-स्लोप सूत्र में प्लग करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
ढलान और दिए गए बिंदु का उपयोग और के स्थान पर पॉइंट-स्लोप फॉर्म में प्रतिस्थापित करें, जो ढलान समीकरण से लिया गया है.
चरण 2.2
समीकरण को सरल करें और इसे पॉइंट-स्लोप फॉर्म में रखें.
चरण 2.3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1
फिर से लिखें.
चरण 2.3.1.2
शून्य जोड़कर सरल करें.
चरण 2.3.1.3
वितरण गुणधर्म लागू करें.
चरण 2.3.1.4
और को मिलाएं.
चरण 2.3.1.5
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.5.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 2.3.1.5.2
में से का गुणनखंड करें.
चरण 2.3.1.5.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.1.5.4
व्यंजक को फिर से लिखें.
चरण 2.3.1.6
को से गुणा करें.
चरण 2.3.2
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.3.2.2
और जोड़ें.
चरण 2.3.3
रूप में लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.1
पदों को पुन: व्यवस्थित करें
चरण 2.3.3.2
कोष्ठक हटा दें.
चरण 3