कैलकुलस उदाहरण

सीमा का मूल्यांकन करें x-1) का वर्गमूल x-1)/( का घन मूल ( का लिमिट जब x 1 की ओर एप्रोच कर रहा हो
चरण 1
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.2.1.2
रेडिकल साइन के तहत सीमा को स्थानांतरित करें.
चरण 1.1.2.1.3
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.2.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.2.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.3.1.1
का कोई भी मूल होता है.
चरण 1.1.2.3.1.2
को से गुणा करें.
चरण 1.1.2.3.2
में से घटाएं.
चरण 1.1.3
भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.3.1.2
रेडिकल साइन के तहत सीमा को स्थानांतरित करें.
चरण 1.1.3.1.3
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.3.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.3.1.1
का कोई भी मूल होता है.
चरण 1.1.3.3.1.2
को से गुणा करें.
चरण 1.1.3.3.2
में से घटाएं.
चरण 1.1.3.3.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 1.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 1.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.3.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 1.3.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3.3
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.3.3.4
और को मिलाएं.
चरण 1.3.3.5
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.3.3.6
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.3.6.1
को से गुणा करें.
चरण 1.3.3.6.2
में से घटाएं.
चरण 1.3.3.7
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.3.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.5.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 1.3.5.2
पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 1.3.5.2.1
को से गुणा करें.
चरण 1.3.5.2.2
और जोड़ें.
चरण 1.3.6
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.7
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.7.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 1.3.7.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.7.3
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.3.7.4
और को मिलाएं.
चरण 1.3.7.5
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.3.7.6
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.7.6.1
को से गुणा करें.
चरण 1.3.7.6.2
में से घटाएं.
चरण 1.3.7.7
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.3.8
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.9
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.9.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 1.3.9.2
पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 1.3.9.2.1
को से गुणा करें.
चरण 1.3.9.2.2
और जोड़ें.
चरण 1.4
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 1.5
को के रूप में फिर से लिखें.
चरण 1.6
गुणनखंडों को जोड़े.
और स्टेप्स के लिए टैप करें…
चरण 1.6.1
और को मिलाएं.
चरण 1.6.2
और को मिलाएं.
चरण 2
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 2.2
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.3
रेडिकल साइन के तहत सीमा को स्थानांतरित करें.
चरण 2.4
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 3
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 4
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
जोड़ना.
चरण 4.2
का कोई भी मूल होता है.
चरण 4.3
एक का कोई भी घात एक होता है.
चरण 4.4
को से गुणा करें.
चरण 4.5
को से गुणा करें.
चरण 5
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: