समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2
का मान ज्ञात करें.
चरण 1.2.1
को के रूप में फिर से लिखें.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3
के संबंध में का व्युत्पन्न है.
चरण 1.4
सरल करें.
चरण 1.4.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 1.4.2
पदों को पुन: व्यवस्थित करें
चरण 2
चरण 2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2
का मान ज्ञात करें.
चरण 2.2.1
को के रूप में फिर से लिखें.
चरण 2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3
का मान ज्ञात करें.
चरण 2.3.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.3.2
को के रूप में फिर से लिखें.
चरण 2.3.3
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.3.3.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.3.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.3.3
की सभी घटनाओं को से बदलें.
चरण 2.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.6
घातांक को में गुणा करें.
चरण 2.3.6.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.3.6.2
को से गुणा करें.
चरण 2.3.7
को से गुणा करें.
चरण 2.3.8
को के घात तक बढ़ाएं.
चरण 2.3.9
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.3.10
में से घटाएं.
चरण 2.3.11
को से गुणा करें.
चरण 2.3.12
को से गुणा करें.
चरण 2.3.13
और जोड़ें.
चरण 2.4
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 2.5
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 2.6
और को मिलाएं.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
चरण 4.1
पहला व्युत्पन्न पता करें.
चरण 4.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.2
का मान ज्ञात करें.
चरण 4.1.2.1
को के रूप में फिर से लिखें.
चरण 4.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.3
के संबंध में का व्युत्पन्न है.
चरण 4.1.4
सरल करें.
चरण 4.1.4.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 4.1.4.2
पदों को पुन: व्यवस्थित करें
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
समीकरण के पदों का LCD पता करें.
चरण 5.2.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 5.2.2
चूँकि में संख्याएँ और चर दोनों शामिल हैं, LCM को खोजने के लिए दो चरण हैं. संख्यात्मक भाग के लिए LCM खोजें फिर चर भाग के लिए LCM पता करें.
चरण 5.2.3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 5.2.4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 5.2.5
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 5.2.6
का गुणनखंड ही है.
बार आता है.
चरण 5.2.7
के गुणनखंड हैं, जो कि को एक दूसरे से बार गुणा करते हैं.
बार आता है.
चरण 5.2.8
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 5.2.9
को से गुणा करें.
चरण 5.3
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
चरण 5.3.1
के प्रत्येक पद को से गुणा करें.
चरण 5.3.2
बाईं ओर को सरल बनाएंं.
चरण 5.3.2.1
प्रत्येक पद को सरल करें.
चरण 5.3.2.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.2.1.1.1
में से का गुणनखंड करें.
चरण 5.3.2.1.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.2.1.1.3
व्यंजक को फिर से लिखें.
चरण 5.3.2.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.2.1.2.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 5.3.2.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.2.1.2.3
व्यंजक को फिर से लिखें.
चरण 5.3.3
दाईं ओर को सरल बनाएंं.
चरण 5.3.3.1
को से गुणा करें.
चरण 5.4
समीकरण के दोनों पक्षों में जोड़ें.
चरण 6
चरण 6.1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 6.2
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 6.3
के लिए हल करें.
चरण 6.3.1
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 6.3.2
को सरल करें.
चरण 6.3.2.1
को के रूप में फिर से लिखें.
चरण 6.3.2.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 6.3.2.3
जोड़ या घटाव , है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
चरण 9.1
प्रत्येक पद को सरल करें.
चरण 9.1.1
एक का कोई भी घात एक होता है.
चरण 9.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.1.2.2
व्यंजक को फिर से लिखें.
चरण 9.1.3
को से गुणा करें.
चरण 9.1.4
एक का कोई भी घात एक होता है.
चरण 9.1.5
को से विभाजित करें.
चरण 9.2
और जोड़ें.
चरण 10
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 11
चरण 11.1
व्यंजक में चर को से बदलें.
चरण 11.2
परिणाम को सरल बनाएंं.
चरण 11.2.1
प्रत्येक पद को सरल करें.
चरण 11.2.1.1
को से विभाजित करें.
चरण 11.2.1.2
का प्राकृतिक लघुगणक है.
चरण 11.2.2
और जोड़ें.
चरण 11.2.3
अंतिम उत्तर है.
चरण 12
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय निम्नत्तम है
चरण 13