कैलकुलस उदाहरण

स्थानीय अधिकतम और न्यूनतम ज्ञात कीजिये। f(x) = natural log of x^4+27
चरण 1
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.2
के संबंध में का व्युत्पन्न है.
चरण 1.1.3
की सभी घटनाओं को से बदलें.
चरण 1.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.4
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.4.1
और जोड़ें.
चरण 1.2.4.2
और को मिलाएं.
चरण 1.2.4.3
और को मिलाएं.
चरण 2
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2
भागफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.3
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.2
को के बाईं ओर ले जाएं.
चरण 2.3.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.6
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.6.1
और जोड़ें.
चरण 2.3.6.2
को से गुणा करें.
चरण 2.4
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
ले जाएं.
चरण 2.4.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.4.3
और जोड़ें.
चरण 2.5
और को मिलाएं.
चरण 2.6
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
वितरण गुणधर्म लागू करें.
चरण 2.6.2
वितरण गुणधर्म लागू करें.
चरण 2.6.3
वितरण गुणधर्म लागू करें.
चरण 2.6.4
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.4.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.4.1.1
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.4.1.1.1
ले जाएं.
चरण 2.6.4.1.1.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.6.4.1.1.3
और जोड़ें.
चरण 2.6.4.1.2
को से गुणा करें.
चरण 2.6.4.1.3
को से गुणा करें.
चरण 2.6.4.1.4
को से गुणा करें.
चरण 2.6.4.1.5
को से गुणा करें.
चरण 2.6.4.2
में से घटाएं.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 4.1.1.2
के संबंध में का व्युत्पन्न है.
चरण 4.1.1.3
की सभी घटनाओं को से बदलें.
चरण 4.1.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.2.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.4
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.4.1
और जोड़ें.
चरण 4.1.2.4.2
और को मिलाएं.
चरण 4.1.2.4.3
और को मिलाएं.
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
न्यूमेरेटर को शून्य के बराबर सेट करें.
चरण 5.3
के लिए समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.3.1.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.1.2.1.2
को से विभाजित करें.
चरण 5.3.1.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1.3.1
को से विभाजित करें.
चरण 5.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 5.3.3
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.3.1
को के रूप में फिर से लिखें.
चरण 5.3.3.2
वास्तविक संख्या मानकर, करणी के अंतर्गत से पदों को बाहर निकालें.
चरण 6
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 9.1.2
को से गुणा करें.
चरण 9.1.3
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 9.1.4
को से गुणा करें.
चरण 9.1.5
और जोड़ें.
चरण 9.2
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.2.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 9.2.2
और जोड़ें.
चरण 9.2.3
को के घात तक बढ़ाएं.
चरण 9.3
को से विभाजित करें.
चरण 10
चूँकि या अपरिभाषित दूसरा व्युत्पन्न के साथ कम से कम एक बिंदु है, इसलिए पहला व्युत्पन्न परीक्षण लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
को मानों के लगभग अलग-अलग अंतराल में विभाजित करें जो पहले व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 10.2
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
और स्टेप्स के लिए टैप करें…
चरण 10.2.1
व्यंजक में चर को से बदलें.
चरण 10.2.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 10.2.2.1
को के घात तक बढ़ाएं.
चरण 10.2.2.2
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.2.2.2.1
को के घात तक बढ़ाएं.
चरण 10.2.2.2.2
और जोड़ें.
चरण 10.2.2.3
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 10.2.2.3.1
को से गुणा करें.
चरण 10.2.2.3.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 10.2.2.4
अंतिम उत्तर है.
चरण 10.3
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
और स्टेप्स के लिए टैप करें…
चरण 10.3.1
व्यंजक में चर को से बदलें.
चरण 10.3.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 10.3.2.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.3.2.1.1
को के रूप में फिर से लिखें.
चरण 10.3.2.1.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 10.3.2.1.3
और जोड़ें.
चरण 10.3.2.2
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.3.2.2.1
को के घात तक बढ़ाएं.
चरण 10.3.2.2.2
और जोड़ें.
चरण 10.3.2.3
को के घात तक बढ़ाएं.
चरण 10.3.2.4
अंतिम उत्तर है.
चरण 10.4
चूँकि पहले व्युत्पन्न ने संकेतों को ऋणात्मक से धनात्मक में के लगभग बदल दिया, तो एक स्थानीय न्यूनतम है.
एक स्थानीय न्यूनतम है.
एक स्थानीय न्यूनतम है.
चरण 11