कैलकुलस उदाहरण

सीमा का मूल्यांकन करें (5x^3+1)/(x-x^3) का लिमिट, जब x infinity की ओर एप्रोच करता हो
चरण 1
न्यूमेरेटर और भाजक को भाजक में की उच्चतम घात से विभाजित करें, जो कि है.
चरण 2
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.1.2
को से विभाजित करें.
चरण 2.2
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
को के घात तक बढ़ाएं.
चरण 2.2.1.2
में से का गुणनखंड करें.
चरण 2.2.1.3
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.3.1
में से का गुणनखंड करें.
चरण 2.2.1.3.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.3.3
व्यंजक को फिर से लिखें.
चरण 2.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.2.2
व्यंजक को फिर से लिखें.
चरण 2.2.3
को से गुणा करें.
चरण 2.3
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.4
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.5
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 3
चूँकि इसका न्यूमेरेटर एक वास्तविक संख्या तक पहुँचता है, जबकि इसका भाजक असीम होता है, इसलिए भिन्न के करीब पहुंच जाता है.
चरण 4
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 5
चूँकि इसका न्यूमेरेटर एक वास्तविक संख्या तक पहुँचता है, जबकि इसका भाजक असीम होता है, इसलिए भिन्न के करीब पहुंच जाता है.
चरण 6
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 6.2
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
और जोड़ें.
चरण 6.2.2
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.2.1
को से गुणा करें.
चरण 6.2.2.2
में से घटाएं.
चरण 6.2.3
को से विभाजित करें.