कैलकुलस उदाहरण

L'Hospital के नियम का प्रयोग करके मान निकालिये। (cos(x))/(1-sin(x)) का लिमिट, जब x pi/2 की ओर एप्रोच करता हो
चरण 1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 1.2.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.2.3
का सटीक मान है.
चरण 1.3
भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.3.1.2
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.3.1.3
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 1.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.3.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.3.1.1
का सटीक मान है.
चरण 1.3.3.1.2
को से गुणा करें.
चरण 1.3.3.2
में से घटाएं.
चरण 1.3.3.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 3.2
के संबंध में का व्युत्पन्न है.
चरण 3.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.5
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.5.2
के संबंध में का व्युत्पन्न है.
चरण 3.6
में से घटाएं.
चरण 4
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 5
को में बदलें.
चरण 6
बाईं ओर की सीमा पर विचार करें.
चरण 7
जैसे ही मान बाईं ओर से की ओर एप्रोच करता हैं, फलन मान बिना किसी बाध्यता के बढ़ जाते हैं.
चरण 8
दाईं ओर की सीमा पर विचार करें.
चरण 9
जैसे ही मान दाईं ओर से की ओर एप्रोच करता हैं, फलन मान बिना किसी बाध्यता के घटते जाते हैं.
चरण 10
चूँकि बाईं ओर और दाईं ओर की सीमाएं समान नहीं हैं, इसलिए सीमा मौजूद नहीं है.