समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
को एक फलन के रूप में लिखें.
चरण 2
चरण 2.1
पहला व्युत्पन्न पता करें.
चरण 2.1.1
अवकलन करें.
चरण 2.1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.2
का मान ज्ञात करें.
चरण 2.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.2.3
को से गुणा करें.
चरण 2.1.3
का मान ज्ञात करें.
चरण 2.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.3.3
को से गुणा करें.
चरण 2.2
दूसरा व्युत्पन्न पता करें.
चरण 2.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
का मान ज्ञात करें.
चरण 2.2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.2.3
को से गुणा करें.
चरण 2.2.3
का मान ज्ञात करें.
चरण 2.2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.3.3
को से गुणा करें.
चरण 2.2.4
स्थिरांक नियम का उपयोग करके अंतर करें.
चरण 2.2.4.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.4.2
और जोड़ें.
चरण 2.3
का दूसरा व्युत्पन्न बटे , है.
चरण 3
चरण 3.1
दूसरे व्युत्पन्न को के बराबर सेट करें.
चरण 3.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.3
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 3.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.3.2
बाईं ओर को सरल बनाएंं.
चरण 3.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.1.2
को से विभाजित करें.
चरण 3.3.3
दाईं ओर को सरल बनाएंं.
चरण 3.3.3.1
को से विभाजित करें.
चरण 4
चरण 4.1
का मान ज्ञात करने के लिए को में प्रतिस्थापित करें.
चरण 4.1.1
व्यंजक में चर को से बदलें.
चरण 4.1.2
परिणाम को सरल बनाएंं.
चरण 4.1.2.1
प्रत्येक पद को सरल करें.
चरण 4.1.2.1.1
एक का कोई भी घात एक होता है.
चरण 4.1.2.1.2
एक का कोई भी घात एक होता है.
चरण 4.1.2.1.3
को से गुणा करें.
चरण 4.1.2.1.4
को से गुणा करें.
चरण 4.1.2.2
संख्याओं को घटाकर सरल करें.
चरण 4.1.2.2.1
में से घटाएं.
चरण 4.1.2.2.2
में से घटाएं.
चरण 4.1.2.3
अंतिम उत्तर है.
चरण 4.2
को में प्रतिस्थापित करने पर पता किया जाने वाला बिंदु है. यह बिंदु एक विभक्ति बिंदु हो सकता है.
चरण 5
को उन बिंदुओं के आसपास के अंतराल में विभाजित करें जो संभावित रूप से विभक्ति बिंदु हो सकते हैं.
चरण 6
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
चरण 6.2.1
को से गुणा करें.
चरण 6.2.2
में से घटाएं.
चरण 6.2.3
अंतिम उत्तर है.
चरण 6.3
पर, दूसरा व्युत्पन्न है. चूँकि यह ऋणात्मक है, इसलिए अंतराल पर दूसरा व्युत्पन्न घट रहा है
से पर घटता हुआ
से पर घटता हुआ
चरण 7
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
चरण 7.2.1
को से गुणा करें.
चरण 7.2.2
में से घटाएं.
चरण 7.2.3
अंतिम उत्तर है.
चरण 7.3
पर, दूसरा व्युत्पन्न है. चूंकि यह धनात्मक है, इसलिए दूसरा अवकलज अंतराल पर बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 8
एक विभक्ति बिंदु एक वक्र पर एक बिंदु है, जिस पर अवतलता संकेत को जोड़ से घटाव या घटाव से जोड़ में बदल देती है. इस मामले में विभक्ति बिंदु है.
चरण 9