कैलकुलस उदाहरण

अनंतस्‍पर्शी रेखाओं का पता लगाओ f(x)=(x^2+1)/(x^2-1)
चरण 1
पता करें कि व्यंजक/अभिव्यक्ति कहाँ अपरिभाषित है.
चरण 2
चूँकि को बाईं ओर से और को दाईं ओर से के रूप में, फिर (EQUATION6 ) एक ऊर्ध्वाधर अनंतस्पर्शी है.
चरण 3
चूँकि को बाईं ओर से और को दाईं ओर से के रूप में, फिर (EQUATION6 ) एक ऊर्ध्वाधर अनंतस्पर्शी है.
चरण 4
सभी ऊर्ध्वाधर अनंतस्पर्शी की सूची बनाएंं:
चरण 5
परिमेय फलन पर विचार करें जहां न्यूमेरेटर की घात है और भाजक की घात है.
1. यदि , तो x-अक्ष, , हॉरिजॉन्टल ऐसिम्प्टोट है.
2. यदि है, तो हॉरिजॉन्टल ऐसिम्प्टोट रेखा है.
3. यदि है, तो कोई हॉरिजॉन्टल ऐसिम्प्टोट नहीं है (एक तिरछी अनंतस्पर्शी है).
चरण 6
और पता करें.
चरण 7
चूंकि , हॉरिजॉन्टल ऐसिम्प्टोट है जहां और .
चरण 8
कोई तिरछी अनंतस्पर्शी नहीं है क्योंकि न्यूमेरेटर की डिग्री भाजक की डिग्री से कम या उसके बराबर है.
कोई तिरछी अनंतस्पर्शी नहीं
चरण 9
यह सभी अनंतस्पर्शी का सेट है.
ऊर्ध्वाधर अनंतस्पर्शी:
हॉरिजॉन्टल ऐसिम्प्टोट:
कोई तिरछी अनंतस्पर्शी नहीं
चरण 10