कैलकुलस उदाहरण

नति परिवर्तन बिन्दुओं का पता लगाएं x^4-6x^2+5
चरण 1
को एक फलन के रूप में लिखें.
चरण 2
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.2.3
को से गुणा करें.
चरण 2.1.3
स्थिरांक नियम का उपयोग करके अंतर करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.3.2
और जोड़ें.
चरण 2.2
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.2.3
को से गुणा करें.
चरण 2.2.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.3.3
को से गुणा करें.
चरण 2.3
का दूसरा व्युत्पन्न बटे , है.
चरण 3
दूसरे व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
दूसरे व्युत्पन्न को के बराबर सेट करें.
चरण 3.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.1.2
को से विभाजित करें.
चरण 3.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.1
को से विभाजित करें.
चरण 3.4
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.5
का कोई भी मूल होता है.
चरण 3.6
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 3.6.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.6.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.6.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 4
उन बिंदुओं को पता करें जहां दूसरा व्युत्पन्न है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
का मान ज्ञात करने के लिए को में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
व्यंजक में चर को से बदलें.
चरण 4.1.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1.1
एक का कोई भी घात एक होता है.
चरण 4.1.2.1.2
एक का कोई भी घात एक होता है.
चरण 4.1.2.1.3
को से गुणा करें.
चरण 4.1.2.2
जोड़कर और घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.2.1
में से घटाएं.
चरण 4.1.2.2.2
और जोड़ें.
चरण 4.1.2.3
अंतिम उत्तर है.
चरण 4.2
को में प्रतिस्थापित करने पर पता किया जाने वाला बिंदु है. यह बिंदु एक विभक्ति बिंदु हो सकता है.
चरण 4.3
का मान ज्ञात करने के लिए को में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
व्यंजक में चर को से बदलें.
चरण 4.3.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.1.1
को के घात तक बढ़ाएं.
चरण 4.3.2.1.2
को के घात तक बढ़ाएं.
चरण 4.3.2.1.3
को से गुणा करें.
चरण 4.3.2.2
जोड़कर और घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.2.1
में से घटाएं.
चरण 4.3.2.2.2
और जोड़ें.
चरण 4.3.2.3
अंतिम उत्तर है.
चरण 4.4
को में प्रतिस्थापित करने पर पता किया जाने वाला बिंदु है. यह बिंदु एक विभक्ति बिंदु हो सकता है.
चरण 4.5
ऐसे बिंदु निर्धारित करें जो विभक्ति बिंदु हो सकते हैं.
चरण 5
को उन बिंदुओं के आसपास के अंतराल में विभाजित करें जो संभावित रूप से विभक्ति बिंदु हो सकते हैं.
चरण 6
यह निर्धारित करने के लिए कि यह बढ़ता या घटता है, अंतराल से एक मान को दूसरे व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1
को के घात तक बढ़ाएं.
चरण 6.2.1.2
को से गुणा करें.
चरण 6.2.2
में से घटाएं.
चरण 6.2.3
अंतिम उत्तर है.
चरण 6.3
पर, दूसरा व्युत्पन्न है. चूंकि यह धनात्मक है, इसलिए दूसरा अवकलज अंतराल पर बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 7
यह निर्धारित करने के लिए कि यह बढ़ता या घटता है, अंतराल से एक मान को दूसरे व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 7.2.1.2
को से गुणा करें.
चरण 7.2.2
में से घटाएं.
चरण 7.2.3
अंतिम उत्तर है.
चरण 7.3
पर, दूसरा व्युत्पन्न है. चूँकि यह ऋणात्मक है, इसलिए अंतराल पर दूसरा व्युत्पन्न घट रहा है
से पर घटता हुआ
से पर घटता हुआ
चरण 8
यह निर्धारित करने के लिए कि यह बढ़ता या घटता है, अंतराल से एक मान को दूसरे व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
व्यंजक में चर को से बदलें.
चरण 8.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1.1
को के घात तक बढ़ाएं.
चरण 8.2.1.2
को से गुणा करें.
चरण 8.2.2
में से घटाएं.
चरण 8.2.3
अंतिम उत्तर है.
चरण 8.3
पर, दूसरा व्युत्पन्न है. चूंकि यह धनात्मक है, इसलिए दूसरा अवकलज अंतराल पर बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 9
एक विभक्ति बिंदु एक वक्र पर एक बिंदु है, जिस पर अवतलता संकेत को प्लस से माइनस या माइनस से प्लस में बदल देती है. इस मामले में विभक्ति बिंदु हैं.
चरण 10