कैलकुलस उदाहरण

अंतराल पर पूर्ण अधिकतम और न्यूनतम खोजें f(x)=(2x+5)/3 , [0,5]
,
चरण 1
क्रांतिक बिन्दुओं को ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.1.5
को से गुणा करें.
चरण 1.1.1.6
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.7
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.7.1
और जोड़ें.
चरण 1.1.1.7.2
और को मिलाएं.
चरण 1.1.2
का पहला व्युत्पन्न बटे , है.
चरण 1.2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 1.2.2
न्यूमेरेटर को शून्य के बराबर सेट करें.
चरण 1.2.3
के बाद से कोई हल नहीं है.
कोई हल नहीं
कोई हल नहीं
चरण 1.3
मूल समस्या के डोमेन में का कोई मान नहीं है जहां व्युत्पन्न या अपरिभाषित है.
कोई क्रांतिक बिंदु नहीं मिला
कोई क्रांतिक बिंदु नहीं मिला
चरण 2
शामिल समापन बिंदुओं पर मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
को से प्रतिस्थापित करें.
चरण 2.1.2
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
को से गुणा करें.
चरण 2.1.2.2
और जोड़ें.
चरण 2.2
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
को से प्रतिस्थापित करें.
चरण 2.2.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1.1
को से गुणा करें.
चरण 2.2.2.1.2
और जोड़ें.
चरण 2.2.2.2
को से विभाजित करें.
चरण 2.3
सभी बिंदुओं को सूचीबद्ध करें.
चरण 3
दिए गए अंतराल में पूर्ण अधिकतम और न्यूनतम निर्धारित करने के लिए के प्रत्येक मान के लिए पाए गए मानों की तुलना करें. अधिकतम उच्चतम मान पर होगा और न्यूनतम न्यूनतम मान पर होगा.
निरपेक्ष उचिष्ठ:
निरपेक्ष निम्निष्ठ:
चरण 4