कैलकुलस उदाहरण

अंतराल पर पूर्ण अधिकतम और न्यूनतम खोजें g(x)=(8x^2)/(x-2) , [-2,1]
,
चरण 1
क्रांतिक बिन्दुओं को ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.2
भागफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.1.1.3
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.3.1
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.1.3.2
को के बाईं ओर ले जाएं.
चरण 1.1.1.3.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.1.3.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.3.6
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.3.6.1
और जोड़ें.
चरण 1.1.1.3.6.2
को से गुणा करें.
चरण 1.1.1.3.6.3
और को मिलाएं.
चरण 1.1.1.4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.4.1
वितरण गुणधर्म लागू करें.
चरण 1.1.1.4.2
वितरण गुणधर्म लागू करें.
चरण 1.1.1.4.3
वितरण गुणधर्म लागू करें.
चरण 1.1.1.4.4
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.4.4.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.4.4.1.1
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.4.4.1.1.1
ले जाएं.
चरण 1.1.1.4.4.1.1.2
को से गुणा करें.
चरण 1.1.1.4.4.1.2
को से गुणा करें.
चरण 1.1.1.4.4.1.3
को से गुणा करें.
चरण 1.1.1.4.4.1.4
को से गुणा करें.
चरण 1.1.1.4.4.1.5
को से गुणा करें.
चरण 1.1.1.4.4.2
में से घटाएं.
चरण 1.1.1.4.5
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.4.5.1
में से का गुणनखंड करें.
चरण 1.1.1.4.5.2
में से का गुणनखंड करें.
चरण 1.1.1.4.5.3
में से का गुणनखंड करें.
चरण 1.1.2
का पहला व्युत्पन्न बटे , है.
चरण 1.2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 1.2.2
न्यूमेरेटर को शून्य के बराबर सेट करें.
चरण 1.2.3
के लिए समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.1
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 1.2.3.2
को के बराबर सेट करें.
चरण 1.2.3.3
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.3.1
को के बराबर सेट करें.
चरण 1.2.3.3.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 1.2.3.4
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 1.3
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 1.3.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.2.1
को के बराबर सेट करें.
चरण 1.3.2.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 1.4
प्रत्येक मान पर का मूल्यांकन करें जहां व्युत्पन्न या अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1.1
को से प्रतिस्थापित करें.
चरण 1.4.1.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1.2.1
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1.2.1.1
में से का गुणनखंड करें.
चरण 1.4.1.2.1.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1.2.1.2.1
में से का गुणनखंड करें.
चरण 1.4.1.2.1.2.2
में से का गुणनखंड करें.
चरण 1.4.1.2.1.2.3
में से का गुणनखंड करें.
चरण 1.4.1.2.1.2.4
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.4.1.2.1.2.5
व्यंजक को फिर से लिखें.
चरण 1.4.1.2.2
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1.2.2.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 1.4.1.2.2.2
में से घटाएं.
चरण 1.4.1.2.2.3
को से गुणा करें.
चरण 1.4.1.2.2.4
को से विभाजित करें.
चरण 1.4.2
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.1
को से प्रतिस्थापित करें.
चरण 1.4.2.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.2.1
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.2.1.1
में से का गुणनखंड करें.
चरण 1.4.2.2.1.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.2.1.2.1
में से का गुणनखंड करें.
चरण 1.4.2.2.1.2.2
में से का गुणनखंड करें.
चरण 1.4.2.2.1.2.3
में से का गुणनखंड करें.
चरण 1.4.2.2.1.2.4
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.4.2.2.1.2.5
व्यंजक को फिर से लिखें.
चरण 1.4.2.2.2
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.2.2.1
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.2.2.1.1
को के घात तक बढ़ाएं.
चरण 1.4.2.2.2.1.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.4.2.2.2.2
और जोड़ें.
चरण 1.4.2.2.3
को के घात तक बढ़ाएं.
चरण 1.4.2.2.4
में से घटाएं.
चरण 1.4.2.2.5
को से विभाजित करें.
चरण 1.4.3
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.3.1
को से प्रतिस्थापित करें.
चरण 1.4.3.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.3.2.1
में से घटाएं.
चरण 1.4.3.2.2
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
अपरिभाषित
अपरिभाषित
चरण 1.4.4
सभी बिंदुओं को सूचीबद्ध करें.
चरण 2
उन बिंदुओं को हटा दें जो अंतराल पर नहीं हैं.
चरण 3
शामिल समापन बिंदुओं पर मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
को से प्रतिस्थापित करें.
चरण 3.1.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1.1
में से का गुणनखंड करें.
चरण 3.1.2.1.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1.2.1
में से का गुणनखंड करें.
चरण 3.1.2.1.2.2
में से का गुणनखंड करें.
चरण 3.1.2.1.2.3
में से का गुणनखंड करें.
चरण 3.1.2.1.2.4
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.1.2.1.2.5
व्यंजक को फिर से लिखें.
चरण 3.1.2.2
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.2.1
को के घात तक बढ़ाएं.
चरण 3.1.2.2.2
में से घटाएं.
चरण 3.1.2.2.3
को से गुणा करें.
चरण 3.1.2.2.4
को से विभाजित करें.
चरण 3.2
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
को से प्रतिस्थापित करें.
चरण 3.2.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
एक का कोई भी घात एक होता है.
चरण 3.2.2.2
में से घटाएं.
चरण 3.2.2.3
को से गुणा करें.
चरण 3.2.2.4
को से विभाजित करें.
चरण 3.3
सभी बिंदुओं को सूचीबद्ध करें.
चरण 4
दिए गए अंतराल में पूर्ण अधिकतम और न्यूनतम निर्धारित करने के लिए के प्रत्येक मान के लिए पाए गए मानों की तुलना करें. अधिकतम उच्चतम मान पर होगा और न्यूनतम न्यूनतम मान पर होगा.
निरपेक्ष उचिष्ठ:
निरपेक्ष निम्निष्ठ:
चरण 5