कैलकुलस उदाहरण

अंतराल पर पूर्ण अधिकतम और न्यूनतम खोजें f(x)=cos(x)-x , [pi/2,2pi]
,
चरण 1
क्रांतिक बिन्दुओं को ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.2
के संबंध में का व्युत्पन्न है.
चरण 1.1.1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.1.3.3
को से गुणा करें.
चरण 1.1.1.4
पदों को पुन: व्यवस्थित करें
चरण 1.1.2
का पहला व्युत्पन्न बटे , है.
चरण 1.2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 1.2.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 1.2.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.2.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 1.2.3.2.2
को से विभाजित करें.
चरण 1.2.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.3.1
को से विभाजित करें.
चरण 1.2.4
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
चरण 1.2.5
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.5.1
का सटीक मान है.
चरण 1.2.6
तीसरे और चौथे चतुर्थांश में ज्या फलन ऋणात्मक होता है. दूसरा हल पता करने के लिए, संदर्भ कोण पता करने के लिए हल को से घटाएं. इसके बाद, तीसरे चतुर्थांश में हल पता करने के लिए इस संदर्भ कोण को में जोड़ें.
चरण 1.2.7
दूसरा हल निकालने के लिए व्यंजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.7.1
में से घटाएं.
चरण 1.2.7.2
का परिणामी कोण धनात्मक है, से कम है और के साथ कोटरमिनल है.
चरण 1.2.8
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.8.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 1.2.8.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 1.2.8.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 1.2.8.4
को से विभाजित करें.
चरण 1.2.9
धनात्मक कोण प्राप्त करने के लिए प्रत्येक ऋणात्मक कोण में जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.9.1
धनात्मक कोण ज्ञात करने के लिए को में जोड़ें.
चरण 1.2.9.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.2.9.3
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.9.3.1
और को मिलाएं.
चरण 1.2.9.3.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.2.9.4
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.9.4.1
को से गुणा करें.
चरण 1.2.9.4.2
में से घटाएं.
चरण 1.2.9.5
नए कोणों की सूची बनाएंं.
चरण 1.2.10
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
चरण 1.2.11
उत्तरों को समेकित करें.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 1.3
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 1.4
प्रत्येक मान पर का मूल्यांकन करें जहां व्युत्पन्न या अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1.1
को से प्रतिस्थापित करें.
चरण 1.4.1.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1.2.1.1
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें.
चरण 1.4.1.2.1.2
का सटीक मान है.
चरण 1.4.1.2.2
में से घटाएं.
चरण 1.4.2
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.1
को से प्रतिस्थापित करें.
चरण 1.4.2.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.2.1.1
का पूरा घुमाव घटाएं जब तक कि कोण से बड़ा या उसके बराबर और से कम न हो जाए.
चरण 1.4.2.2.1.2
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें.
चरण 1.4.2.2.1.3
का सटीक मान है.
चरण 1.4.2.2.2
में से घटाएं.
चरण 1.4.3
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.3.1
को से प्रतिस्थापित करें.
चरण 1.4.3.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.3.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.3.2.1.1
का पूरा घुमाव घटाएं जब तक कि कोण से बड़ा या उसके बराबर और से कम न हो जाए.
चरण 1.4.3.2.1.2
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें.
चरण 1.4.3.2.1.3
का सटीक मान है.
चरण 1.4.3.2.2
में से घटाएं.
चरण 1.4.4
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.4.1
को से प्रतिस्थापित करें.
चरण 1.4.4.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.4.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.4.2.1.1
का पूरा घुमाव घटाएं जब तक कि कोण से बड़ा या उसके बराबर और से कम न हो जाए.
चरण 1.4.4.2.1.2
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें.
चरण 1.4.4.2.1.3
का सटीक मान है.
चरण 1.4.4.2.2
में से घटाएं.
चरण 1.4.5
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.5.1
को से प्रतिस्थापित करें.
चरण 1.4.5.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.5.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.5.2.1.1
का पूरा घुमाव घटाएं जब तक कि कोण से बड़ा या उसके बराबर और से कम न हो जाए.
चरण 1.4.5.2.1.2
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें.
चरण 1.4.5.2.1.3
का सटीक मान है.
चरण 1.4.5.2.2
में से घटाएं.
चरण 1.4.6
सभी बिंदुओं को सूचीबद्ध करें.
चरण 2
उन बिंदुओं को हटा दें जो अंतराल पर नहीं हैं.
चरण 3
शामिल समापन बिंदुओं पर मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
को से प्रतिस्थापित करें.
चरण 3.1.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1
का सटीक मान है.
चरण 3.1.2.2
में से घटाएं.
चरण 3.2
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
को से प्रतिस्थापित करें.
चरण 3.2.2
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
का पूरा घुमाव घटाएं जब तक कि कोण से बड़ा या उसके बराबर और से कम न हो जाए.
चरण 3.2.2.2
का सटीक मान है.
चरण 3.2.2.3
को से गुणा करें.
चरण 3.3
सभी बिंदुओं को सूचीबद्ध करें.
चरण 4
दिए गए अंतराल में पूर्ण अधिकतम और न्यूनतम निर्धारित करने के लिए के प्रत्येक मान के लिए पाए गए मानों की तुलना करें. अधिकतम उच्चतम मान पर होगा और न्यूनतम न्यूनतम मान पर होगा.
निरपेक्ष उचिष्ठ:
निरपेक्ष निम्निष्ठ:
चरण 5