कैलकुलस उदाहरण

अंतराल पर पूर्ण अधिकतम और न्यूनतम खोजें f(x)=|x|
चरण 1
के संबंध में का व्युत्पन्न है.
चरण 2
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
भागफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.2
घात नियम का उपयोग करके अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.2
को से गुणा करें.
चरण 2.3
के संबंध में का व्युत्पन्न है.
चरण 2.4
और को मिलाएं.
चरण 2.5
को के घात तक बढ़ाएं.
चरण 2.6
को के घात तक बढ़ाएं.
चरण 2.7
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.8
और जोड़ें.
चरण 2.9
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.9.1
पदों को पुन: व्यवस्थित करें
चरण 2.9.2
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.9.2.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 2.9.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2.9.2.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.9.2.3.1
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.9.2.3.1.1
निरपेक्ष मानों को गुणा करने के लिए, प्रत्येक निरपेक्ष मान के अंदर के पदों को गुणा करें.
चरण 2.9.2.3.1.2
को के घात तक बढ़ाएं.
चरण 2.9.2.3.1.3
को के घात तक बढ़ाएं.
चरण 2.9.2.3.1.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.9.2.3.1.5
और जोड़ें.
चरण 2.9.2.3.2
निरपेक्ष मान से गैर-ऋणात्मक शब्द हटा दें.
चरण 2.9.2.3.3
और जोड़ें.
चरण 2.9.2.4
को से विभाजित करें.
चरण 2.9.3
में निरपेक्ष मान हटा दें क्योंकि सम घात वाले घातांक हमेशा धनात्मक होते हैं.
चरण 2.9.4
को से विभाजित करें.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
के संबंध में का व्युत्पन्न है.
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
न्यूमेरेटर को शून्य के बराबर सेट करें.
चरण 5.3
उन हलों को छोड़ दें जो को सत्य नहीं बनाते हैं.
चरण 6
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 6.1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 6.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
निरपेक्ष मान पद को हटा दें. यह समीकरण के दाएं पक्ष की ओर एक बनाता है जो है.
चरण 6.2.2
जोड़ या घटाव , है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
चूँकि या अपरिभाषित दूसरा व्युत्पन्न के साथ कम से कम एक बिंदु है, इसलिए पहला व्युत्पन्न परीक्षण लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
को मानों के लगभग अलग-अलग अंतराल में विभाजित करें जो पहले व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 9.2
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
और स्टेप्स के लिए टैप करें…
चरण 9.2.1
व्यंजक में चर को से बदलें.
चरण 9.2.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 9.2.2.1
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 9.2.2.2
को से विभाजित करें.
चरण 9.2.2.3
अंतिम उत्तर है.
चरण 9.3
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
और स्टेप्स के लिए टैप करें…
चरण 9.3.1
व्यंजक में चर को से बदलें.
चरण 9.3.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 9.3.2.1
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 9.3.2.2
को से विभाजित करें.
चरण 9.3.2.3
अंतिम उत्तर है.
चरण 9.4
चूँकि पहले व्युत्पन्न ने संकेतों को ऋणात्मक से धनात्मक में के लगभग बदल दिया, तो एक स्थानीय न्यूनतम है.
एक स्थानीय न्यूनतम है.
एक स्थानीय न्यूनतम है.
चरण 10