कैलकुलस उदाहरण

(2,0)での接線を求める y=(x^3-4x)^8 at the point (2,0)
at the point
चरण 1
स्पर्शरेखा का ढलान ज्ञात करने के लिए पहला व्युत्पन्न ज्ञात करें और और पर मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3
की सभी घटनाओं को से बदलें.
चरण 1.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.5
को से गुणा करें.
चरण 1.3
पर व्युत्पन्न का मान ज्ञात करें.
चरण 1.4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1.1
को के घात तक बढ़ाएं.
चरण 1.4.1.2
को से गुणा करें.
चरण 1.4.2
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.1
में से घटाएं.
चरण 1.4.2.2
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 1.4.2.3
को से गुणा करें.
चरण 1.4.3
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.3.1
को के घात तक बढ़ाएं.
चरण 1.4.3.2
को से गुणा करें.
चरण 1.4.4
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.4.4.1
में से घटाएं.
चरण 1.4.4.2
को से गुणा करें.
चरण 2
ढलान और बिंदु मानों को पॉइंट-स्लोप सूत्र में प्लग करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
ढलान और दिए गए बिंदु का उपयोग और के स्थान पर पॉइंट-स्लोप फॉर्म में प्रतिस्थापित करें, जो ढलान समीकरण से लिया गया है.
चरण 2.2
समीकरण को सरल करें और इसे पॉइंट-स्लोप फॉर्म में रखें.
चरण 2.3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
और जोड़ें.
चरण 2.3.2
को से गुणा करें.
चरण 3