कैलकुलस उदाहरण

x=0での接線を求める f(x)=x^3-3x^2+2x-2 at x=0
at
चरण 1
के संगत -मान पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
को में प्रतिस्थापित करें.
चरण 1.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
कोष्ठक हटा दें.
चरण 1.2.2
कोष्ठक हटा दें.
चरण 1.2.3
कोष्ठक हटा दें.
चरण 1.2.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.4.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.4.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 1.2.4.1.2
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 1.2.4.1.3
को से गुणा करें.
चरण 1.2.4.1.4
को से गुणा करें.
चरण 1.2.4.2
जोड़कर और घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.4.2.1
और जोड़ें.
चरण 1.2.4.2.2
और जोड़ें.
चरण 1.2.4.2.3
में से घटाएं.
चरण 2
स्पर्शरेखा का ढलान ज्ञात करने के लिए पहला व्युत्पन्न ज्ञात करें और और पर मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.3
को से गुणा करें.
चरण 2.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.3
को से गुणा करें.
चरण 2.4
स्थिरांक नियम का उपयोग करके अंतर करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.4.2
और जोड़ें.
चरण 2.5
पर व्युत्पन्न का मान ज्ञात करें.
चरण 2.6
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 2.6.1.2
को से गुणा करें.
चरण 2.6.1.3
को से गुणा करें.
चरण 2.6.2
संख्याओं को जोड़कर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.1
और जोड़ें.
चरण 2.6.2.2
और जोड़ें.
चरण 3
ढलान और बिंदु मानों को पॉइंट-स्लोप सूत्र में प्लग करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
ढलान और दिए गए बिंदु का उपयोग और के स्थान पर पॉइंट-स्लोप फॉर्म में प्रतिस्थापित करें, जो ढलान समीकरण से लिया गया है.
चरण 3.2
समीकरण को सरल करें और इसे पॉइंट-स्लोप फॉर्म में रखें.
चरण 3.3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
और जोड़ें.
चरण 3.3.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 4