कैलकुलस उदाहरण

微分値を求める - d/dx (1+tan(x))/(1+cot(x))
चरण 1
भागफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3
और जोड़ें.
चरण 3
के संबंध में का व्युत्पन्न है.
चरण 4
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.3
और जोड़ें.
चरण 5
के संबंध में का व्युत्पन्न है.
चरण 6
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
को से गुणा करें.
चरण 6.2
को से गुणा करें.
चरण 7
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
वितरण गुणधर्म लागू करें.
चरण 7.2
वितरण गुणधर्म लागू करें.
चरण 7.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.3.1.1
को से गुणा करें.
चरण 7.3.1.2
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 7.3.1.3
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 7.3.1.4
उत्पाद नियम को पर लागू करें.
चरण 7.3.1.5
एक का कोई भी घात एक होता है.
चरण 7.3.1.6
को से गुणा करें.
चरण 7.3.1.7
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 7.3.1.7.1
से गुणा करें.
चरण 7.3.1.7.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 7.3.1.7.2.1
में से का गुणनखंड करें.
चरण 7.3.1.7.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 7.3.1.7.2.3
व्यंजक को फिर से लिखें.
चरण 7.3.1.8
अलग-अलग भिन्न
चरण 7.3.1.9
को में बदलें.
चरण 7.3.1.10
को में बदलें.
चरण 7.3.1.11
को से गुणा करें.
चरण 7.3.1.12
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 7.3.1.13
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 7.3.1.14
उत्पाद नियम को पर लागू करें.
चरण 7.3.1.15
एक का कोई भी घात एक होता है.
चरण 7.3.1.16
को से गुणा करें.
चरण 7.3.1.17
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 7.3.1.17.1
से गुणा करें.
चरण 7.3.1.17.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 7.3.1.17.2.1
में से का गुणनखंड करें.
चरण 7.3.1.17.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 7.3.1.17.2.3
व्यंजक को फिर से लिखें.
चरण 7.3.1.18
अलग-अलग भिन्न
चरण 7.3.1.19
को में बदलें.
चरण 7.3.1.20
को में बदलें.
चरण 7.3.2
के गुणनखंडों को फिर से क्रमित करें.
चरण 7.3.3
और जोड़ें.
चरण 7.4
पदों को पुन: व्यवस्थित करें
चरण 7.5
पूर्ण वर्ग नियम का उपयोग करके गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 7.5.1
पदों को पुनर्व्यवस्थित करें.
चरण 7.5.2
जाँच करें कि मध्य पद पहले पद और तीसरे पद में वर्गीकृत की जा रही संख्याओं के गुणनफल का दोगुना है.
चरण 7.5.3
बहुपद को फिर से लिखें.
चरण 7.5.4
पूर्ण वर्ग त्रिपद नियम का उपयोग करके गुणनखंड करें, जहाँ और है.