समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
चरण 1.2.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.2.2
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.2.3
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 1.2.4
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.2.5
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.2.6
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 1.2.7
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
चरण 1.2.7.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.2.7.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.2.8
उत्तर को सरल करें.
चरण 1.2.8.1
प्रत्येक पद को सरल करें.
चरण 1.2.8.1.1
और जोड़ें.
चरण 1.2.8.1.2
का सटीक मान है.
चरण 1.2.8.1.3
को से गुणा करें.
चरण 1.2.8.1.4
को के घात तक बढ़ाएं.
चरण 1.2.8.1.5
को से गुणा करें.
चरण 1.2.8.2
में से घटाएं.
चरण 1.3
भाजक की सीमा का मान ज्ञात करें.
चरण 1.3.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.3.2
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.3.3
सीमा को घातांक में ले जाएँ.
चरण 1.3.4
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.3.5
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.3.6
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.3.7
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 1.3.8
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
चरण 1.3.8.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.3.8.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.3.9
उत्तर को सरल करें.
चरण 1.3.9.1
प्रत्येक पद को सरल करें.
चरण 1.3.9.1.1
को से गुणा करें.
चरण 1.3.9.1.2
और जोड़ें.
चरण 1.3.9.1.3
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 1.3.9.1.4
को से गुणा करें.
चरण 1.3.9.1.5
को के घात तक बढ़ाएं.
चरण 1.3.9.1.6
को से गुणा करें.
चरण 1.3.9.2
में से घटाएं.
चरण 1.3.9.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.3.10
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 3
चरण 3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.3
का मान ज्ञात करें.
चरण 3.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 3.3.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.3.2.2
के संबंध में का व्युत्पन्न है.
चरण 3.3.2.3
की सभी घटनाओं को से बदलें.
चरण 3.3.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.3.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.6
और जोड़ें.
चरण 3.3.7
को से गुणा करें.
चरण 3.3.8
को से गुणा करें.
चरण 3.4
का मान ज्ञात करें.
चरण 3.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.4.3
को से गुणा करें.
चरण 3.5
पदों को पुन: व्यवस्थित करें
चरण 3.6
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.7
का मान ज्ञात करें.
चरण 3.7.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.7.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 3.7.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.7.2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 3.7.2.3
की सभी घटनाओं को से बदलें.
चरण 3.7.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.7.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.7.5
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.7.6
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.7.7
को से गुणा करें.
चरण 3.7.8
में से घटाएं.
चरण 3.7.9
को के बाईं ओर ले जाएं.
चरण 3.7.10
को से गुणा करें.
चरण 3.8
का मान ज्ञात करें.
चरण 3.8.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.8.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.8.3
को से गुणा करें.
चरण 3.9
पदों को पुन: व्यवस्थित करें
चरण 4
चरण 4.1
में से का गुणनखंड करें.
चरण 4.2
में से का गुणनखंड करें.
चरण 4.3
में से का गुणनखंड करें.
चरण 4.4
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 4.4.1
में से का गुणनखंड करें.
चरण 4.4.2
में से का गुणनखंड करें.
चरण 4.4.3
में से का गुणनखंड करें.
चरण 4.4.4
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.4.5
व्यंजक को फिर से लिखें.
चरण 5
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 6
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 7
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 8
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 9
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 10
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 11
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 12
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 13
सीमा को घातांक में ले जाएँ.
चरण 14
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 15
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 16
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 17
चरण 17.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 17.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 17.3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 17.4
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 18
चरण 18.1
और के उभयनिष्ठ गुणनखंड को रद्द करें.
चरण 18.1.1
में से का गुणनखंड करें.
चरण 18.1.2
में से का गुणनखंड करें.
चरण 18.1.3
में से का गुणनखंड करें.
चरण 18.1.4
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 18.1.4.1
में से का गुणनखंड करें.
चरण 18.1.4.2
में से का गुणनखंड करें.
चरण 18.1.4.3
में से का गुणनखंड करें.
चरण 18.1.4.4
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 18.1.4.5
व्यंजक को फिर से लिखें.
चरण 18.2
न्यूमेरेटर को सरल करें.
चरण 18.2.1
और जोड़ें.
चरण 18.2.2
का सटीक मान है.
चरण 18.2.3
को से गुणा करें.
चरण 18.2.4
और जोड़ें.
चरण 18.3
भाजक को सरल करें.
चरण 18.3.1
को से गुणा करें.
चरण 18.3.2
और जोड़ें.
चरण 18.3.3
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 18.3.4
को से गुणा करें.
चरण 18.3.5
में से घटाएं.
चरण 18.4
को से विभाजित करें.