समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2
का मान ज्ञात करें.
चरण 1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.2.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.2.3
की सभी घटनाओं को से बदलें.
चरण 1.2.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.6
और जोड़ें.
चरण 1.2.7
को से गुणा करें.
चरण 1.2.8
और को मिलाएं.
चरण 1.2.9
और को मिलाएं.
चरण 1.3
स्थिरांक नियम का उपयोग करके अंतर करें.
चरण 1.3.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
और जोड़ें.
चरण 2
चरण 2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.3
की सभी घटनाओं को से बदलें.
चरण 2.3
अवकलन करें.
चरण 2.3.1
और को मिलाएं.
चरण 2.3.2
सामान्य गुणनखंडों को रद्द करके व्यंजक को छोटा करें.
चरण 2.3.2.1
को से गुणा करें.
चरण 2.3.2.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
चरण 2.3.2.2.1
में से का गुणनखंड करें.
चरण 2.3.2.2.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 2.3.2.2.2.1
में से का गुणनखंड करें.
चरण 2.3.2.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.2.2.2.3
व्यंजक को फिर से लिखें.
चरण 2.3.2.2.2.4
को से विभाजित करें.
चरण 2.3.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.6
व्यंजक को सरल बनाएंं.
चरण 2.3.6.1
और जोड़ें.
चरण 2.3.6.2
को से गुणा करें.
चरण 2.4
सरल करें.
चरण 2.4.1
वितरण गुणधर्म लागू करें.
चरण 2.4.2
को से गुणा करें.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
चरण 4.1
पहला व्युत्पन्न पता करें.
चरण 4.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.2
का मान ज्ञात करें.
चरण 4.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 4.1.2.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 4.1.2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.2.2.3
की सभी घटनाओं को से बदलें.
चरण 4.1.2.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.2.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.6
और जोड़ें.
चरण 4.1.2.7
को से गुणा करें.
चरण 4.1.2.8
और को मिलाएं.
चरण 4.1.2.9
और को मिलाएं.
चरण 4.1.3
स्थिरांक नियम का उपयोग करके अंतर करें.
चरण 4.1.3.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.3.2
और जोड़ें.
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
न्यूमेरेटर को शून्य के बराबर सेट करें.
चरण 5.3
के लिए समीकरण को हल करें.
चरण 5.3.1
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 5.3.1.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.3.1.2
बाईं ओर को सरल बनाएंं.
चरण 5.3.1.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.1.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.1.2.1.2
को से विभाजित करें.
चरण 5.3.1.3
दाईं ओर को सरल बनाएंं.
चरण 5.3.1.3.1
को से विभाजित करें.
चरण 5.3.2
को के बराबर सेट करें.
चरण 5.3.3
समीकरण के दोनों पक्षों में जोड़ें.
चरण 6
चरण 6.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
चरण 9.1
को से गुणा करें.
चरण 9.2
में से घटाएं.
चरण 10
चरण 10.1
को मानों के लगभग अलग-अलग अंतराल में विभाजित करें जो पहले व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 10.2
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
चरण 10.2.1
व्यंजक में चर को से बदलें.
चरण 10.2.2
परिणाम को सरल बनाएंं.
चरण 10.2.2.1
न्यूमेरेटर को सरल करें.
चरण 10.2.2.1.1
में से घटाएं.
चरण 10.2.2.1.2
को के घात तक बढ़ाएं.
चरण 10.2.2.2
व्यंजक को सरल बनाएंं.
चरण 10.2.2.2.1
को से गुणा करें.
चरण 10.2.2.2.2
को से विभाजित करें.
चरण 10.2.2.3
अंतिम उत्तर है.
चरण 10.3
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
चरण 10.3.1
व्यंजक में चर को से बदलें.
चरण 10.3.2
परिणाम को सरल बनाएंं.
चरण 10.3.2.1
न्यूमेरेटर को सरल करें.
चरण 10.3.2.1.1
में से घटाएं.
चरण 10.3.2.1.2
को के घात तक बढ़ाएं.
चरण 10.3.2.2
व्यंजक को सरल बनाएंं.
चरण 10.3.2.2.1
को से गुणा करें.
चरण 10.3.2.2.2
को से विभाजित करें.
चरण 10.3.2.3
अंतिम उत्तर है.
चरण 10.4
चूँकि पहले व्युत्पन्न ने के आसपास के संकेतों को नहीं बदला, यह स्थानीय अधिकतम या न्यूनतम नहीं है.
स्थानीय अधिकतम या न्यूनतम नहीं
चरण 10.5
के लिए कोई स्थानीय अधिकतम या निम्नतम नहीं मिला.
कोई स्थानीय अधिकतम या निम्नतम नहीं है
कोई स्थानीय अधिकतम या निम्नतम नहीं है
चरण 11