कैलकुलस उदाहरण

सीमा का मूल्यांकन करें 4)/(x-4) का प्राकृतिक लघुगणक x- के प्राकृतिक लघुगणक ( का लिमिट जब x 4 की ओर एप्रोच कर रहा हो
चरण 1
लघुगणक के भागफल गुण का प्रयोग करें.
चरण 2
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 2.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1.1
लघुगणक के अंदर की सीमा को स्थानांतरित करें.
चरण 2.1.2.1.2
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 2.1.2.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 2.1.2.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.3.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.1.2.3.1.2
व्यंजक को फिर से लिखें.
चरण 2.1.2.3.2
का प्राकृतिक लघुगणक है.
चरण 2.1.3
भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.1.3.1.2
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 2.1.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 2.1.3.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.3.1
को से गुणा करें.
चरण 2.1.3.3.2
में से घटाएं.
चरण 2.1.3.3.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 2.1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 2.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 2.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 2.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 2.3.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.3.2.2
के संबंध में का व्युत्पन्न है.
चरण 2.3.2.3
की सभी घटनाओं को से बदलें.
चरण 2.3.3
से भाग देने के लिए भिन्न के प्रतिलोम से गुणा करें.
चरण 2.3.4
को से गुणा करें.
चरण 2.3.5
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.6
को से गुणा करें.
चरण 2.3.7
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.7.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.7.2
व्यंजक को फिर से लिखें.
चरण 2.3.8
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.9
को से गुणा करें.
चरण 2.3.10
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.11
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.12
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.13
और जोड़ें.
चरण 2.4
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 2.5
को से गुणा करें.
चरण 3
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.2
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 4
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 5
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: