समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
चरण 1.2.1
सीमा का मूल्यांकन करें.
चरण 1.2.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.2.1.2
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 1.2.1.3
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.2.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.2.3
उत्तर को सरल करें.
चरण 1.2.3.1
प्रत्येक पद को सरल करें.
चरण 1.2.3.1.1
एक का कोई भी घात एक होता है.
चरण 1.2.3.1.2
को से गुणा करें.
चरण 1.2.3.2
में से घटाएं.
चरण 1.3
भाजक की सीमा का मान ज्ञात करें.
चरण 1.3.1
सीमा का मूल्यांकन करें.
चरण 1.3.1.1
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 1.3.1.2
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.3.3
उत्तर को सरल करें.
चरण 1.3.3.1
को से गुणा करें.
चरण 1.3.3.2
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें.
चरण 1.3.3.3
का सटीक मान है.
चरण 1.3.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 3
चरण 3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.5
और जोड़ें.
चरण 3.6
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 3.6.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.6.2
के संबंध में का व्युत्पन्न है.
चरण 3.6.3
की सभी घटनाओं को से बदलें.
चरण 3.7
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.8
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.9
को से गुणा करें.
चरण 3.10
के गुणनखंडों को फिर से क्रमित करें.
चरण 4
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 5
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 6
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 7
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 8
चरण 8.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 8.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 9
चरण 9.1
को में बदलें.
चरण 9.2
को से गुणा करें.
चरण 9.3
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक कीजिए क्योंकि दूसरे चतुर्थांश में खण्ड ऋणात्मक है.
चरण 9.4
का सटीक मान है.
चरण 9.5
को से गुणा करें.
चरण 9.6
गुणा करें.
चरण 9.6.1
और को मिलाएं.
चरण 9.6.2
को से गुणा करें.
चरण 9.7
भिन्न के सामने ऋणात्मक ले जाएँ.