कैलकुलस उदाहरण

समाकल का मान ज्ञात कीजिये cos(2x)e^(sin(2x)) बटे x का समाकलन 0 है जिसकी सीमा pi/4 है
चरण 1
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
मान लें . ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
को अवकलित करें.
चरण 1.1.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.2.2
के संबंध में का व्युत्पन्न है.
चरण 1.1.2.3
की सभी घटनाओं को से बदलें.
चरण 1.1.3
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.3
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.3.1
को से गुणा करें.
चरण 1.1.3.3.2
को के बाईं ओर ले जाएं.
चरण 1.2
के लिए में निचली सीमा को प्रतिस्थापित करें.
चरण 1.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
को से गुणा करें.
चरण 1.3.2
का सटीक मान है.
चरण 1.4
के लिए में ऊपरी सीमा को प्रतिस्थापित करें.
चरण 1.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1.1
में से का गुणनखंड करें.
चरण 1.5.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.5.1.3
व्यंजक को फिर से लिखें.
चरण 1.5.2
का सटीक मान है.
चरण 1.6
और के लिए पाए गए मानों का उपयोग निश्चित समाकल का मूल्यांकन करने के लिए किया जाएगा.
चरण 1.7
, और समाकलन की नई सीमाओं का उपयोग करके समस्या को फिर से लिखें.
चरण 2
और को मिलाएं.
चरण 3
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 4
के संबंध में का इंटीग्रल है.
चरण 5
प्रतिस्थापित करें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
पर और पर का मान ज्ञात करें.
चरण 5.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
सरल करें.
चरण 5.2.2
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 5.2.3
को से गुणा करें.
चरण 6
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
वितरण गुणधर्म लागू करें.
चरण 6.2
और को मिलाएं.
चरण 6.3
और को मिलाएं.
चरण 6.4
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 7
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: