कैलकुलस उदाहरण

सीमा का मूल्यांकन करें 14x-3-5) का वर्गमूल 2x-2)/( के वर्गमूल ( का लिमिट जब x 2 की ओर एप्रोच कर रहा हो
चरण 1
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.2.1.2
रेडिकल साइन के तहत सीमा को स्थानांतरित करें.
चरण 1.1.2.1.3
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.1.2.1.4
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.2.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.2.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.3.1.1
को से गुणा करें.
चरण 1.1.2.3.1.2
को के रूप में फिर से लिखें.
चरण 1.1.2.3.1.3
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 1.1.2.3.1.4
को से गुणा करें.
चरण 1.1.2.3.2
में से घटाएं.
चरण 1.1.3
भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.3.1.2
रेडिकल साइन के तहत सीमा को स्थानांतरित करें.
चरण 1.1.3.1.3
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.3.1.4
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.1.3.1.5
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.3.1.6
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.3.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.3.1.1
को से गुणा करें.
चरण 1.1.3.3.1.2
को से गुणा करें.
चरण 1.1.3.3.1.3
में से घटाएं.
चरण 1.1.3.3.1.4
को के रूप में फिर से लिखें.
चरण 1.1.3.3.1.5
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 1.1.3.3.1.6
को से गुणा करें.
चरण 1.1.3.3.2
में से घटाएं.
चरण 1.1.3.3.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 1.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 1.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.3.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 1.3.3.2
में से का गुणनखंड करें.
चरण 1.3.3.3
उत्पाद नियम को पर लागू करें.
चरण 1.3.3.4
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.3.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3.6
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.3.3.7
और को मिलाएं.
चरण 1.3.3.8
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.3.3.9
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.3.9.1
को से गुणा करें.
चरण 1.3.3.9.2
में से घटाएं.
चरण 1.3.3.10
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.3.3.11
और को मिलाएं.
चरण 1.3.3.12
और को मिलाएं.
चरण 1.3.3.13
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 1.3.3.14
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 1.3.3.15
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.3.15.1
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.3.15.1.1
को के घात तक बढ़ाएं.
चरण 1.3.3.15.1.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.3.3.15.2
एक सामान्य भाजक के साथ को भिन्न के रूप में लिखें.
चरण 1.3.3.15.3
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.3.3.15.4
में से घटाएं.
चरण 1.3.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.5
और जोड़ें.
चरण 1.3.6
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.7
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.7.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 1.3.7.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.3.7.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.3.7.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.7.2.3
की सभी घटनाओं को से बदलें.
चरण 1.3.7.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.7.4
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.7.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.7.6
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.7.7
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.3.7.8
और को मिलाएं.
चरण 1.3.7.9
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.3.7.10
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.7.10.1
को से गुणा करें.
चरण 1.3.7.10.2
में से घटाएं.
चरण 1.3.7.11
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.3.7.12
को से गुणा करें.
चरण 1.3.7.13
और जोड़ें.
चरण 1.3.7.14
और को मिलाएं.
चरण 1.3.7.15
और को मिलाएं.
चरण 1.3.7.16
को के बाईं ओर ले जाएं.
चरण 1.3.7.17
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 1.3.7.18
में से का गुणनखंड करें.
चरण 1.3.7.19
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.7.19.1
में से का गुणनखंड करें.
चरण 1.3.7.19.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.3.7.19.3
व्यंजक को फिर से लिखें.
चरण 1.3.8
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.9
और जोड़ें.
चरण 1.4
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 1.5
भिन्नात्मक घातांक को करणी में बदलें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1
को के रूप में फिर से लिखें.
चरण 1.5.2
को के रूप में फिर से लिखें.
चरण 1.5.3
को के रूप में फिर से लिखें.
चरण 1.6
गुणनखंडों को जोड़े.
और स्टेप्स के लिए टैप करें…
चरण 1.6.1
रेडिकल के लिए उत्पाद नियम का उपयोग करके जोड़ें.
चरण 1.6.2
को से गुणा करें.
चरण 2
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 2.2
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.3
रेडिकल साइन के तहत सीमा को स्थानांतरित करें.
चरण 2.4
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.5
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 2.6
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 2.7
रेडिकल साइन के तहत सीमा को स्थानांतरित करें.
चरण 2.8
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 3
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 4
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
को से गुणा करें.
चरण 4.1.2
को से गुणा करें.
चरण 4.1.3
में से घटाएं.
चरण 4.1.4
को के रूप में फिर से लिखें.
चरण 4.1.5
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 4.2
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
को से गुणा करें.
चरण 4.2.2
को के रूप में फिर से लिखें.
चरण 4.2.3
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 4.3
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
को से गुणा करें.
चरण 4.3.2
को से गुणा करें.
चरण 5
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: