कैलकुलस उदाहरण

केंद्र और त्रिज्या ज्ञात कीजिये (x-4)^2+(y+3)=25
चरण 1
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.3
में से घटाएं.
चरण 2
, और के मान निर्धारित करने के लिए शीर्ष रूप का उपयोग करें.
चरण 3
चूंकि का मान ऋणात्मक है, परवलय नीचे खुलता है.
नीचे खुलता है
चरण 4
शीर्ष पता करें.
चरण 5
, शीर्ष से नाभि तक की दूरी पता करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
निम्न सूत्र का उपयोग करके परवलय के शीर्ष से नाभि तक की दूरी पता करें.
चरण 5.2
के मान को सूत्र में प्रतिस्थापित करें.
चरण 5.3
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
को के रूप में फिर से लिखें.
चरण 5.3.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 6
नाभि पता करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
यदि परवलय ऊपर या नीचे खुलता है तो y-निर्देशांक में जोड़कर परवलय का फोकस पता किया जा सकता है.
चरण 6.2
, और के ज्ञात मानों को सूत्र में प्रतिस्थापित करें और सरल करें.
चरण 7
शीर्ष और नाभि से होकर जाने वाली रेखा पता करके सममिति अक्ष का पता करें
चरण 8
नियता पता करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
परवलय की नियता वह क्षैतिज रेखा है जो शीर्ष के y-निर्देशांक से घटाकर प्राप्त की जाती है यदि परवलय ऊपर या नीचे खुलता है.
चरण 8.2
और के ज्ञात मानों को सूत्र में प्रतिस्थापित करें और सरल करें.
चरण 9
परवलय के गुणों का उपयोग करके परवलय का विश्लेषण और ग्राफ करें.
दिशा: नीचे खुलती है
शीर्ष:
फोकस:
सममिति की धुरी:
नियता:
चरण 10