समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
चरण 1.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
चरण 1.1.2.1
सीमा का मूल्यांकन करें.
चरण 1.1.2.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.2.1.2
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.2.1.3
सीमा को घातांक में ले जाएँ.
चरण 1.1.2.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.2.3
उत्तर को सरल करें.
चरण 1.1.2.3.1
प्रत्येक पद को सरल करें.
चरण 1.1.2.3.1.1
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 1.1.2.3.1.2
को से गुणा करें.
चरण 1.1.2.3.2
में से घटाएं.
चरण 1.1.3
भाजक की सीमा का मान ज्ञात करें.
चरण 1.1.3.1
सीमा का मूल्यांकन करें.
चरण 1.1.3.1.1
लघुगणक के अंदर की सीमा को स्थानांतरित करें.
चरण 1.1.3.1.2
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.3.1.3
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.3.1.4
सीमा को घातांक में ले जाएँ.
चरण 1.1.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.3.3
उत्तर को सरल करें.
चरण 1.1.3.3.1
प्रत्येक पद को सरल करें.
चरण 1.1.3.3.1.1
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 1.1.3.3.1.2
को से गुणा करें.
चरण 1.1.3.3.2
में से घटाएं.
चरण 1.1.3.3.3
का प्राकृतिक लघुगणक है.
चरण 1.1.3.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 1.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
चरण 1.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 1.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.4
का मान ज्ञात करें.
चरण 1.3.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.4.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 1.3.5
में से घटाएं.
चरण 1.3.6
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.3.6.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.3.6.2
के संबंध में का व्युत्पन्न है.
चरण 1.3.6.3
की सभी घटनाओं को से बदलें.
चरण 1.3.7
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.8
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.9
और जोड़ें.
चरण 1.3.10
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.11
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 1.3.12
और को मिलाएं.
चरण 1.4
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 1.5
गुणनखंडों को जोड़े.
चरण 1.5.1
को से गुणा करें.
चरण 1.5.2
को से गुणा करें.
चरण 1.5.3
और को मिलाएं.
चरण 1.6
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.6.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.6.2
को से विभाजित करें.
चरण 2
चरण 2.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 2.2
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 2.3
सीमा को घातांक में ले जाएँ.
चरण 3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 4
चरण 4.1
प्रत्येक पद को सरल करें.
चरण 4.1.1
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 4.1.2
को से गुणा करें.
चरण 4.2
में से घटाएं.