समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2
भागफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 3
चरण 3.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.4
व्यंजक को सरल बनाएंं.
चरण 3.4.1
और जोड़ें.
चरण 3.4.2
को के बाईं ओर ले जाएं.
चरण 3.5
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.6
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.7
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.8
न्यूमेरेटरों को जोड़ें.
चरण 3.8.1
और जोड़ें.
चरण 3.8.2
को से गुणा करें.
चरण 3.8.3
और को मिलाएं.
चरण 4
चरण 4.1
वितरण गुणधर्म लागू करें.
चरण 4.2
वितरण गुणधर्म लागू करें.
चरण 4.3
वितरण गुणधर्म लागू करें.
चरण 4.4
वितरण गुणधर्म लागू करें.
चरण 4.5
वितरण गुणधर्म लागू करें.
चरण 4.6
न्यूमेरेटर को सरल करें.
चरण 4.6.1
में विपरीत पदों को मिलाएं.
चरण 4.6.1.1
गुणनखंडों को और पदों में पुन: व्यवस्थित करें.
चरण 4.6.1.2
में से घटाएं.
चरण 4.6.1.3
और जोड़ें.
चरण 4.6.2
प्रत्येक पद को सरल करें.
चरण 4.6.2.1
को से गुणा करें.
चरण 4.6.2.2
को से गुणा करें.
चरण 4.6.2.3
को से गुणा करें.
चरण 4.6.2.4
को से गुणा करें.
चरण 4.6.3
और जोड़ें.
चरण 4.7
भाजक को सरल करें.
चरण 4.7.1
को के रूप में फिर से लिखें.
चरण 4.7.2
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 4.7.3
उत्पाद नियम को पर लागू करें.