समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
पहला व्युत्पन्न पता करें.
चरण 1.1.1
अवकलन करें.
चरण 1.1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2
का मान ज्ञात करें.
चरण 1.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2
को के रूप में फिर से लिखें.
चरण 1.1.2.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.4
को से गुणा करें.
चरण 1.1.3
सरल करें.
चरण 1.1.3.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 1.1.3.2
पदों को मिलाएं.
चरण 1.1.3.2.1
और को मिलाएं.
चरण 1.1.3.2.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.2
दूसरा व्युत्पन्न पता करें.
चरण 1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
का मान ज्ञात करें.
चरण 1.2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.2.3
को से गुणा करें.
चरण 1.2.3
का मान ज्ञात करें.
चरण 1.2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.3.2
को के रूप में फिर से लिखें.
चरण 1.2.3.3
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.2.3.3.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.2.3.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3.3.3
की सभी घटनाओं को से बदलें.
चरण 1.2.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3.5
घातांक को में गुणा करें.
चरण 1.2.3.5.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 1.2.3.5.2
को से गुणा करें.
चरण 1.2.3.6
को से गुणा करें.
चरण 1.2.3.7
को के घात तक बढ़ाएं.
चरण 1.2.3.8
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.2.3.9
में से घटाएं.
चरण 1.2.3.10
को से गुणा करें.
चरण 1.2.4
सरल करें.
चरण 1.2.4.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 1.2.4.2
और को मिलाएं.
चरण 1.2.4.3
पदों को पुन: व्यवस्थित करें
चरण 1.3
का दूसरा व्युत्पन्न बटे , है.
चरण 2
चरण 2.1
दूसरे व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.3
समीकरण के पदों का LCD पता करें.
चरण 2.3.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 2.3.2
एक और किसी भी व्यंजक का LCM (लघुत्तम समापवर्तक) व्यंजक है.
चरण 2.4
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
चरण 2.4.1
के प्रत्येक पद को से गुणा करें.
चरण 2.4.2
बाईं ओर को सरल बनाएंं.
चरण 2.4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.2.1.2
व्यंजक को फिर से लिखें.
चरण 2.5
समीकरण को हल करें.
चरण 2.5.1
समीकरण को के रूप में फिर से लिखें.
चरण 2.5.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.5.3
समीकरण के बाएँ पक्ष का गुणनखंड करें.
चरण 2.5.3.1
में से का गुणनखंड करें.
चरण 2.5.3.1.1
में से का गुणनखंड करें.
चरण 2.5.3.1.2
में से का गुणनखंड करें.
चरण 2.5.3.1.3
में से का गुणनखंड करें.
चरण 2.5.3.2
को के रूप में फिर से लिखें.
चरण 2.5.3.3
चूंकि दोनों पद पूर्ण घन हैं, घन सूत्र के योग का उपयोग करके गुणनखंड करें, जहाँ और .
चरण 2.5.3.4
गुणनखंड करें.
चरण 2.5.3.4.1
सरल करें.
चरण 2.5.3.4.1.1
को से गुणा करें.
चरण 2.5.3.4.1.2
को के घात तक बढ़ाएं.
चरण 2.5.3.4.2
अनावश्यक कोष्ठक हटा दें.
चरण 2.5.4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.5.5
को के बराबर सेट करें और के लिए हल करें.
चरण 2.5.5.1
को के बराबर सेट करें.
चरण 2.5.5.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.5.6
को के बराबर सेट करें और के लिए हल करें.
चरण 2.5.6.1
को के बराबर सेट करें.
चरण 2.5.6.2
के लिए हल करें.
चरण 2.5.6.2.1
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 2.5.6.2.2
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 2.5.6.2.3
सरल करें.
चरण 2.5.6.2.3.1
न्यूमेरेटर को सरल करें.
चरण 2.5.6.2.3.1.1
को के घात तक बढ़ाएं.
चरण 2.5.6.2.3.1.2
गुणा करें.
चरण 2.5.6.2.3.1.2.1
को से गुणा करें.
चरण 2.5.6.2.3.1.2.2
को से गुणा करें.
चरण 2.5.6.2.3.1.3
में से घटाएं.
चरण 2.5.6.2.3.1.4
को के रूप में फिर से लिखें.
चरण 2.5.6.2.3.1.5
को के रूप में फिर से लिखें.
चरण 2.5.6.2.3.1.6
को के रूप में फिर से लिखें.
चरण 2.5.6.2.3.1.7
को के रूप में फिर से लिखें.
चरण 2.5.6.2.3.1.7.1
में से का गुणनखंड करें.
चरण 2.5.6.2.3.1.7.2
को के रूप में फिर से लिखें.
चरण 2.5.6.2.3.1.8
करणी से पदों को बाहर निकालें.
चरण 2.5.6.2.3.1.9
को के बाईं ओर ले जाएं.
चरण 2.5.6.2.3.2
को से गुणा करें.
चरण 2.5.6.2.3.3
को सरल करें.
चरण 2.5.6.2.4
के भाग को हल करने के लिए व्यंजक को सरल करें.
चरण 2.5.6.2.4.1
न्यूमेरेटर को सरल करें.
चरण 2.5.6.2.4.1.1
को के घात तक बढ़ाएं.
चरण 2.5.6.2.4.1.2
गुणा करें.
चरण 2.5.6.2.4.1.2.1
को से गुणा करें.
चरण 2.5.6.2.4.1.2.2
को से गुणा करें.
चरण 2.5.6.2.4.1.3
में से घटाएं.
चरण 2.5.6.2.4.1.4
को के रूप में फिर से लिखें.
चरण 2.5.6.2.4.1.5
को के रूप में फिर से लिखें.
चरण 2.5.6.2.4.1.6
को के रूप में फिर से लिखें.
चरण 2.5.6.2.4.1.7
को के रूप में फिर से लिखें.
चरण 2.5.6.2.4.1.7.1
में से का गुणनखंड करें.
चरण 2.5.6.2.4.1.7.2
को के रूप में फिर से लिखें.
चरण 2.5.6.2.4.1.8
करणी से पदों को बाहर निकालें.
चरण 2.5.6.2.4.1.9
को के बाईं ओर ले जाएं.
चरण 2.5.6.2.4.2
को से गुणा करें.
चरण 2.5.6.2.4.3
को सरल करें.
चरण 2.5.6.2.4.4
को में बदलें.
चरण 2.5.6.2.5
के भाग को हल करने के लिए व्यंजक को सरल करें.
चरण 2.5.6.2.5.1
न्यूमेरेटर को सरल करें.
चरण 2.5.6.2.5.1.1
को के घात तक बढ़ाएं.
चरण 2.5.6.2.5.1.2
गुणा करें.
चरण 2.5.6.2.5.1.2.1
को से गुणा करें.
चरण 2.5.6.2.5.1.2.2
को से गुणा करें.
चरण 2.5.6.2.5.1.3
में से घटाएं.
चरण 2.5.6.2.5.1.4
को के रूप में फिर से लिखें.
चरण 2.5.6.2.5.1.5
को के रूप में फिर से लिखें.
चरण 2.5.6.2.5.1.6
को के रूप में फिर से लिखें.
चरण 2.5.6.2.5.1.7
को के रूप में फिर से लिखें.
चरण 2.5.6.2.5.1.7.1
में से का गुणनखंड करें.
चरण 2.5.6.2.5.1.7.2
को के रूप में फिर से लिखें.
चरण 2.5.6.2.5.1.8
करणी से पदों को बाहर निकालें.
चरण 2.5.6.2.5.1.9
को के बाईं ओर ले जाएं.
चरण 2.5.6.2.5.2
को से गुणा करें.
चरण 2.5.6.2.5.3
को सरल करें.
चरण 2.5.6.2.5.4
को में बदलें.
चरण 2.5.6.2.6
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 2.5.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3
चरण 3.1
का मान ज्ञात करने के लिए को में प्रतिस्थापित करें.
चरण 3.1.1
व्यंजक में चर को से बदलें.
चरण 3.1.2
परिणाम को सरल बनाएंं.
चरण 3.1.2.1
प्रत्येक पद को सरल करें.
चरण 3.1.2.1.1
को के घात तक बढ़ाएं.
चरण 3.1.2.1.2
को से विभाजित करें.
चरण 3.1.2.2
में से घटाएं.
चरण 3.1.2.3
अंतिम उत्तर है.
चरण 3.2
को में प्रतिस्थापित करने पर पता किया जाने वाला बिंदु है. यह बिंदु एक विभक्ति बिंदु हो सकता है.
चरण 4
को उन बिंदुओं के आसपास के अंतराल में विभाजित करें जो संभावित रूप से विभक्ति बिंदु हो सकते हैं.
चरण 5
चरण 5.1
व्यंजक में चर को से बदलें.
चरण 5.2
परिणाम को सरल बनाएंं.
चरण 5.2.1
प्रत्येक पद को सरल करें.
चरण 5.2.1.1
को के घात तक बढ़ाएं.
चरण 5.2.1.2
को से विभाजित करें.
चरण 5.2.2
और जोड़ें.
चरण 5.2.3
अंतिम उत्तर है.
चरण 5.3
पर, दूसरा व्युत्पन्न है. चूंकि यह धनात्मक है, इसलिए दूसरा अवकलज अंतराल पर बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 6
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
चरण 6.2.1
प्रत्येक पद को सरल करें.
चरण 6.2.1.1
को के घात तक बढ़ाएं.
चरण 6.2.1.2
को से विभाजित करें.
चरण 6.2.2
और जोड़ें.
चरण 6.2.3
अंतिम उत्तर है.
चरण 6.3
पर, दूसरा व्युत्पन्न है. चूँकि यह ऋणात्मक है, इसलिए अंतराल पर दूसरा व्युत्पन्न घट रहा है
से पर घटता हुआ
से पर घटता हुआ
चरण 7
एक विभक्ति बिंदु एक वक्र पर एक बिंदु है, जिस पर अवतलता संकेत को जोड़ से घटाव या घटाव से जोड़ में बदल देती है. इस मामले में विभक्ति बिंदु है.
चरण 8