कैलकुलस उदाहरण

Second次導関数を求める y=3x^(2/3)-2x
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.2.4
और को मिलाएं.
चरण 1.2.5
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.2.6
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.6.1
को से गुणा करें.
चरण 1.2.6.2
में से घटाएं.
चरण 1.2.7
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.2.8
और को मिलाएं.
चरण 1.2.9
और को मिलाएं.
चरण 1.2.10
को से गुणा करें.
चरण 1.2.11
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 1.2.12
में से का गुणनखंड करें.
चरण 1.2.13
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.13.1
में से का गुणनखंड करें.
चरण 1.2.13.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.13.3
व्यंजक को फिर से लिखें.
चरण 1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3
को से गुणा करें.
चरण 2
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
को के रूप में फिर से लिखें.
चरण 2.2.3
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.2.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.3.3
की सभी घटनाओं को से बदलें.
चरण 2.2.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.5
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.5.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.2.5.2
और को मिलाएं.
चरण 2.2.5.3
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.2.6
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 2.2.7
और को मिलाएं.
चरण 2.2.8
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2.2.9
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.9.1
को से गुणा करें.
चरण 2.2.9.2
में से घटाएं.
चरण 2.2.10
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.2.11
और को मिलाएं.
चरण 2.2.12
और को मिलाएं.
चरण 2.2.13
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.13.1
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.2.13.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2.2.13.3
में से घटाएं.
चरण 2.2.13.4
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.2.14
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 2.2.15
को से गुणा करें.
चरण 2.2.16
और को मिलाएं.
चरण 2.2.17
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.3
स्थिरांक नियम का उपयोग करके अंतर करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2
और जोड़ें.