कैलकुलस उदाहरण

सीमा का मूल्यांकन करें (1-cos(2x)^2)/((2x)^2) का लिमिट, जब x 0 की ओर एप्रोच करता हो
चरण 1
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.2.1.2
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.2.1.3
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 1.1.2.1.4
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 1.1.2.1.5
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.1.2.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.2.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.3.1
पाइथागोरस सर्वसमिका लागू करें.
चरण 1.1.2.3.2
को से गुणा करें.
चरण 1.1.2.3.3
का सटीक मान है.
चरण 1.1.2.3.4
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 1.1.3
भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1.1
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 1.1.3.1.2
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 1.1.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.3.3
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.3.1
को से गुणा करें.
चरण 1.1.3.3.2
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 1.1.3.3.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 1.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 1.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.4
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.4.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.3.4.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.3.4.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.4.2.3
की सभी घटनाओं को से बदलें.
चरण 1.3.4.3
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.3.4.3.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.3.4.3.2
के संबंध में का व्युत्पन्न है.
चरण 1.3.4.3.3
की सभी घटनाओं को से बदलें.
चरण 1.3.4.4
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.4.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.4.6
को से गुणा करें.
चरण 1.3.4.7
को से गुणा करें.
चरण 1.3.4.8
को से गुणा करें.
चरण 1.3.4.9
को से गुणा करें.
चरण 1.3.5
और जोड़ें.
चरण 1.3.6
उत्पाद नियम को पर लागू करें.
चरण 1.3.7
को के घात तक बढ़ाएं.
चरण 1.3.8
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.9
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.10
को से गुणा करें.
चरण 1.4
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1
में से का गुणनखंड करें.
चरण 1.4.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.2.1
में से का गुणनखंड करें.
चरण 1.4.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.4.2.3
व्यंजक को फिर से लिखें.
चरण 2
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 3
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 3.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1
जैसे ही की ओर आ रहा है, उत्पाद सीमा नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.1.2.2
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 3.1.2.3
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 3.1.2.4
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 3.1.2.5
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 3.1.2.6
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.6.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3.1.2.6.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3.1.2.7
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.7.1
को से गुणा करें.
चरण 3.1.2.7.2
का सटीक मान है.
चरण 3.1.2.7.3
को से गुणा करें.
चरण 3.1.2.7.4
को से गुणा करें.
चरण 3.1.2.7.5
का सटीक मान है.
चरण 3.1.3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 3.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 3.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 3.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 3.3.2
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 3.3.3
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.3.3.2
के संबंध में का व्युत्पन्न है.
चरण 3.3.3.3
की सभी घटनाओं को से बदलें.
चरण 3.3.4
को के घात तक बढ़ाएं.
चरण 3.3.5
को के घात तक बढ़ाएं.
चरण 3.3.6
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 3.3.7
और जोड़ें.
चरण 3.3.8
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.9
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.3.10
को से गुणा करें.
चरण 3.3.11
को के बाईं ओर ले जाएं.
चरण 3.3.12
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 3.3.12.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 3.3.12.2
के संबंध में का व्युत्पन्न है.
चरण 3.3.12.3
की सभी घटनाओं को से बदलें.
चरण 3.3.13
को के घात तक बढ़ाएं.
चरण 3.3.14
को के घात तक बढ़ाएं.
चरण 3.3.15
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 3.3.16
और जोड़ें.
चरण 3.3.17
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.18
को से गुणा करें.
चरण 3.3.19
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.3.20
को से गुणा करें.
चरण 3.3.21
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.4
को से विभाजित करें.
चरण 4
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 4.2
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 4.3
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 4.4
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि कोज्या सतत है.
चरण 4.5
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 4.6
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 4.7
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 4.8
त्रिकोणमितीय फलन के भीतर सीमा को खिसकाएँ क्योंकि ज्या सतत है.
चरण 4.9
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 5
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 5.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 6
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.1
को से गुणा करें.
चरण 6.1.2
का सटीक मान है.
चरण 6.1.3
एक का कोई भी घात एक होता है.
चरण 6.1.4
को से गुणा करें.
चरण 6.1.5
को से गुणा करें.
चरण 6.1.6
का सटीक मान है.
चरण 6.1.7
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 6.1.8
को से गुणा करें.
चरण 6.2
और जोड़ें.
चरण 6.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.3.2
व्यंजक को फिर से लिखें.