कैलकुलस उदाहरण

समाकल का मान ज्ञात कीजिये x^2e^(-x^3) बटे x का समाकलन 0 है जिसकी सीमा 1 है
चरण 1
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
मान लें . ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
को अवकलित करें.
चरण 1.1.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 1.1.2.3
की सभी घटनाओं को से बदलें.
चरण 1.1.3
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.3
को से गुणा करें.
चरण 1.1.4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.1
के गुणनखंडों को फिर से क्रमित करें.
चरण 1.1.4.2
गुणनखंडों को में पुन: क्रमित करें.
चरण 1.2
के लिए में निचली सीमा को प्रतिस्थापित करें.
चरण 1.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 1.3.2
को से गुणा करें.
चरण 1.3.3
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 1.4
के लिए में ऊपरी सीमा को प्रतिस्थापित करें.
चरण 1.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1
एक का कोई भी घात एक होता है.
चरण 1.5.2
को से गुणा करें.
चरण 1.5.3
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 1.6
और के लिए पाए गए मानों का उपयोग निश्चित समाकल का मूल्यांकन करने के लिए किया जाएगा.
चरण 1.7
, और समाकलन की नई सीमाओं का उपयोग करके समस्या को फिर से लिखें.
चरण 2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3
स्थिरांक नियम लागू करें.
चरण 4
प्रतिस्थापित करें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पर और पर का मान ज्ञात करें.
चरण 4.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
को से गुणा करें.
चरण 4.2.2
को के बाईं ओर ले जाएं.
चरण 4.2.3
को से गुणा करें.
चरण 5
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप:
चरण 6