समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
चरण 1.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 1.1.2
न्यूमेरेटर की सीमा का मान ज्ञात करें.
चरण 1.1.2.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.2.2
जैसे ही की ओर आ रहा है, उत्पाद सीमा नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.2.3
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 1.1.2.4
रेडिकल साइन के तहत सीमा को स्थानांतरित करें.
चरण 1.1.2.5
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.2.6
की सभी घटनाओं के लिए को प्रतिस्थापित करके सीमा का मान ज्ञात करें.
चरण 1.1.2.6.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.2.6.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.2.7
उत्तर को सरल करें.
चरण 1.1.2.7.1
प्रत्येक पद को सरल करें.
चरण 1.1.2.7.1.1
को के घात तक बढ़ाएं.
चरण 1.1.2.7.1.2
को के रूप में फिर से लिखें.
चरण 1.1.2.7.1.3
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 1.1.2.7.1.4
को से गुणा करें.
चरण 1.1.2.7.1.5
को से गुणा करें.
चरण 1.1.2.7.2
में से घटाएं.
चरण 1.1.3
भाजक की सीमा का मान ज्ञात करें.
चरण 1.1.3.1
सीमा का मूल्यांकन करें.
चरण 1.1.3.1.1
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 1.1.3.1.2
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 1.1.3.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 1.1.3.3
उत्तर को सरल करें.
चरण 1.1.3.3.1
को से गुणा करें.
चरण 1.1.3.3.2
में से घटाएं.
चरण 1.1.3.3.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.3.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.1.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 1.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 1.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
चरण 1.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 1.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.3
का मान ज्ञात करें.
चरण 1.3.3.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 1.3.3.2
घातांक जोड़कर को से गुणा करें.
चरण 1.3.3.2.1
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.3.3.2.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.3.3.2.3
और को मिलाएं.
चरण 1.3.3.2.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.3.3.2.5
न्यूमेरेटर को सरल करें.
चरण 1.3.3.2.5.1
को से गुणा करें.
चरण 1.3.3.2.5.2
और जोड़ें.
चरण 1.3.3.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3.4
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.3.3.5
और को मिलाएं.
चरण 1.3.3.6
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.3.3.7
न्यूमेरेटर को सरल करें.
चरण 1.3.3.7.1
को से गुणा करें.
चरण 1.3.3.7.2
में से घटाएं.
चरण 1.3.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.5
सरल करें.
चरण 1.3.5.1
और जोड़ें.
चरण 1.3.5.2
और को मिलाएं.
चरण 1.3.6
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.7
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.8
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.9
और जोड़ें.
चरण 1.4
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 1.5
को से गुणा करें.
चरण 2
चरण 2.1
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 2.2
सीमा घात नियम का उपयोग करके घातांक को से सीमा से बाभाजक ले जाएं.
चरण 3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 4
चरण 4.1
को के रूप में फिर से लिखें.
चरण 4.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 4.3
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.2
व्यंजक को फिर से लिखें.
चरण 4.4
को के घात तक बढ़ाएं.
चरण 4.5
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.5.1
में से का गुणनखंड करें.
चरण 4.5.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.5.3
व्यंजक को फिर से लिखें.
चरण 4.6
को से गुणा करें.