कैलकुलस उदाहरण

अधिकतम/न्यूनतम मान ज्ञात कीजिये। f(x)=e^(x^2-1)
चरण 1
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 1.1.3
की सभी घटनाओं को से बदलें.
चरण 1.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.4
और जोड़ें.
चरण 1.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
के गुणनखंडों को फिर से क्रमित करें.
चरण 1.3.2
गुणनखंडों को में पुन: क्रमित करें.
चरण 2
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.3
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.3.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.3.3
की सभी घटनाओं को से बदलें.
चरण 2.4
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.4.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.4.4
और जोड़ें.
चरण 2.5
को के घात तक बढ़ाएं.
चरण 2.6
को के घात तक बढ़ाएं.
चरण 2.7
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.8
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.8.1
और जोड़ें.
चरण 2.8.2
को के बाईं ओर ले जाएं.
चरण 2.9
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.10
को से गुणा करें.
चरण 2.11
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.11.1
वितरण गुणधर्म लागू करें.
चरण 2.11.2
को से गुणा करें.
चरण 2.11.3
पदों को पुन: व्यवस्थित करें
चरण 2.11.4
गुणनखंडों को में पुन: क्रमित करें.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 4.1.1.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 4.1.1.3
की सभी घटनाओं को से बदलें.
चरण 4.1.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.2.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.4
और जोड़ें.
चरण 4.1.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.3.1
के गुणनखंडों को फिर से क्रमित करें.
चरण 4.1.3.2
गुणनखंडों को में पुन: क्रमित करें.
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 5.3
को के बराबर सेट करें.
चरण 5.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.1
को के बराबर सेट करें.
चरण 5.4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.2.1
घातांक से चर को हटाने के लिए समीकरण के दोनों पक्षों का प्राकृतिक लघुगणक लें.
चरण 5.4.2.2
समीकरण हल नहीं किया जा सकता क्योंकि अपरिभाषित है.
अपरिभाषित
चरण 5.4.2.3
का कोई हल नहीं है
कोई हल नहीं
कोई हल नहीं
कोई हल नहीं
चरण 5.5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 6
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 9.1.2
को से गुणा करें.
चरण 9.1.3
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 9.1.4
में से घटाएं.
चरण 9.1.5
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 9.1.6
को से गुणा करें.
चरण 9.1.7
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 9.1.8
में से घटाएं.
चरण 9.1.9
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 9.1.10
और को मिलाएं.
चरण 9.2
और जोड़ें.
चरण 10
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 11
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 11.1
व्यंजक में चर को से बदलें.
चरण 11.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 11.2.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 11.2.2
में से घटाएं.
चरण 11.2.3
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 11.2.4
अंतिम उत्तर है.
चरण 12
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय निम्नत्तम है
चरण 13