कैलकुलस उदाहरण

Solve the Differential Equation (dy)/(dx)=(y+1)/(1+x)
चरण 1
चरों को अलग करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
दोनों पक्षों को से गुणा करें.
चरण 1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2
व्यंजक को फिर से लिखें.
चरण 1.3
समीकरण को फिर से लिखें.
चरण 2
दोनों पक्षों को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
बाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
मान लीजिए . फिर . और का उपयोग करके फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
मान लें . ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1.1
को अवकलित करें.
चरण 2.2.1.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2.1.1.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.1.1.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.1.1.5
और जोड़ें.
चरण 2.2.1.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.2.2
के संबंध में का इंटीग्रल है.
चरण 2.2.3
की सभी घटनाओं को से बदलें.
चरण 2.3
दाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
मान लीजिए . फिर . और का उपयोग करके फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1
मान लें . ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1.1
को अवकलित करें.
चरण 2.3.1.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.1.1.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.1.1.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.1.1.5
और जोड़ें.
चरण 2.3.1.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.3.2
के संबंध में का इंटीग्रल है.
चरण 2.3.3
की सभी घटनाओं को से बदलें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
लघुगणक वाले सभी पदों को समीकरण के बाईं पक्ष की ओर ले जाएँ.
चरण 3.2
लघुगणक के भागफल गुण का प्रयोग करें.
चरण 3.3
के लिए हल करने के लिए, लघुगणक के गुणों का उपयोग करके समीकरण को फिर से लिखें.
चरण 3.4
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 3.5
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.5.2
दोनों पक्षों को से गुणा करें.
चरण 3.5.3
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.5.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.3.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.5.3.1.2
व्यंजक को फिर से लिखें.
चरण 3.5.4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.4.1
गुणनखंडों को में पुन: क्रमित करें.
चरण 3.5.4.2
निरपेक्ष मान पद को हटा दें. यह समीकरण के दाएं पक्ष की ओर एक बनाता है जो है.
चरण 3.5.4.3
गुणनखंडों को में पुन: क्रमित करें.
चरण 3.5.4.4
समीकरण के दोनों पक्षों से घटाएं.
चरण 4
स्थिर पदों को एक साथ समूहित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
समाकलन की संतति को सरल करें.
चरण 4.2
प्लस या माइनस के साथ स्थिरांक मिलाएं.