समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
दोनों पक्षों को से गुणा करें.
चरण 1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.1
में से का गुणनखंड करें.
चरण 1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.3
व्यंजक को फिर से लिखें.
चरण 1.3
समीकरण को फिर से लिखें.
चरण 2
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
बाएं पक्ष का समाकलन करें.
चरण 2.2.1
घातांक के बुनियादी नियम लागू करें.
चरण 2.2.1.1
को भाजक में से पावर तक बढ़ा कर हटा दें.
चरण 2.2.1.2
घातांक को में गुणा करें.
चरण 2.2.1.2.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.2.1.2.2
को से गुणा करें.
चरण 2.2.2
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 2.2.3
को के रूप में फिर से लिखें.
चरण 2.3
दाएं पक्ष का समाकलन करें.
चरण 2.3.1
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
चरण 2.3.1.1
मान लें . ज्ञात करें.
चरण 2.3.1.1.1
को अवकलित करें.
चरण 2.3.1.1.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.1.1.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.1.1.4
को से गुणा करें.
चरण 2.3.1.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.3.2
सरल करें.
चरण 2.3.2.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.3.2.2
और को मिलाएं.
चरण 2.3.3
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.4
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.5
के संबंध में का इंटीग्रल है.
चरण 2.3.6
सरल करें.
चरण 2.3.7
की सभी घटनाओं को से बदलें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
चरण 3.1
और को मिलाएं.
चरण 3.2
समीकरण के पदों का LCD पता करें.
चरण 3.2.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 3.2.2
चूँकि में संख्याएँ और चर दोनों शामिल हैं, LCM को खोजने के लिए दो चरण हैं. संख्यात्मक भाग के लिए LCM खोजें फिर चर भाग के लिए LCM पता करें.
चरण 3.2.3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 3.2.4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 3.2.5
चूंकि का और के अलावा कोई गुणनखंड नहीं है.
एक अभाज्य संख्या है
चरण 3.2.6
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 3.2.7
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 3.2.8
का गुणनखंड ही है.
बार आता है.
चरण 3.2.9
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 3.2.10
के लिए LCM (लघुत्तम समापवर्तक) संख्यात्मक भाग को चर भाग से गुणा किया जाता है.
चरण 3.3
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
चरण 3.3.1
के प्रत्येक पद को से गुणा करें.
चरण 3.3.2
बाईं ओर को सरल बनाएंं.
चरण 3.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.3.2.1.2
में से का गुणनखंड करें.
चरण 3.3.2.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.1.4
व्यंजक को फिर से लिखें.
चरण 3.3.2.2
को से गुणा करें.
चरण 3.3.3
दाईं ओर को सरल बनाएंं.
चरण 3.3.3.1
प्रत्येक पद को सरल करें.
चरण 3.3.3.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.3.1.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.3.3.1.1.2
में से का गुणनखंड करें.
चरण 3.3.3.1.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.3.1.1.4
व्यंजक को फिर से लिखें.
चरण 3.3.3.1.2
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.3.3.2
गुणनखंडों को में पुन: क्रमित करें.
चरण 3.4
समीकरण को हल करें.
चरण 3.4.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.4.2
में से का गुणनखंड करें.
चरण 3.4.2.1
में से का गुणनखंड करें.
चरण 3.4.2.2
में से का गुणनखंड करें.
चरण 3.4.2.3
में से का गुणनखंड करें.
चरण 3.4.3
को के रूप में फिर से लिखें.
चरण 3.4.4
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 3.4.4.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.4.4.2
बाईं ओर को सरल बनाएंं.
चरण 3.4.4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.4.2.1.2
को से विभाजित करें.
चरण 3.4.4.3
दाईं ओर को सरल बनाएंं.
चरण 3.4.4.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3.4.4.3.2
में से का गुणनखंड करें.
चरण 3.4.4.3.3
में से का गुणनखंड करें.
चरण 3.4.4.3.4
में से का गुणनखंड करें.
चरण 3.4.4.3.5
व्यंजक को सरल बनाएंं.
चरण 3.4.4.3.5.1
को के रूप में फिर से लिखें.
चरण 3.4.4.3.5.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3.4.4.3.5.3
को से गुणा करें.
चरण 3.4.4.3.5.4
को से गुणा करें.
चरण 4
समाकलन की संतति को सरल करें.