समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 1.1.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.1.2
बाईं ओर को सरल बनाएंं.
चरण 1.1.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.1.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.1.2.1.2
को से विभाजित करें.
चरण 1.1.3
दाईं ओर को सरल बनाएंं.
चरण 1.1.3.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 1.1.3.2
को से गुणा करें.
चरण 1.2
गुणनखंडों को पुनर्समूहन करें
चरण 1.3
दोनों पक्षों को से गुणा करें.
चरण 1.4
सरल करें.
चरण 1.4.1
को से गुणा करें.
चरण 1.4.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.4.2.1
में से का गुणनखंड करें.
चरण 1.4.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.4.2.3
व्यंजक को फिर से लिखें.
चरण 1.5
समीकरण को फिर से लिखें.
चरण 2
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 2.3
दाएं पक्ष का समाकलन करें.
चरण 2.3.1
को के रूप में फिर से लिखें.
चरण 2.3.2
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
चरण 2.3.2.1
मान लें . ज्ञात करें.
चरण 2.3.2.1.1
को अवकलित करें.
चरण 2.3.2.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.2.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.3.3
सरल करें.
चरण 2.3.3.1
सरल करें.
चरण 2.3.3.2
को से गुणा करें.
चरण 2.3.3.3
को के बाईं ओर ले जाएं.
चरण 2.3.4
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.5
मान लीजिए . फिर . और का उपयोग करके फिर से लिखें.
चरण 2.3.5.1
मान लें . ज्ञात करें.
चरण 2.3.5.1.1
को अवकलित करें.
चरण 2.3.5.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.5.1.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.5.1.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.5.1.5
और जोड़ें.
चरण 2.3.5.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.3.6
के संबंध में का इंटीग्रल है.
चरण 2.3.7
सरल करें.
चरण 2.3.8
प्रत्येक एकीकरण प्रतिस्थापन चर के लिए वापस प्रतिस्थापित करें.
चरण 2.3.8.1
की सभी घटनाओं को से बदलें.
चरण 2.3.8.2
की सभी घटनाओं को से बदलें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
चरण 3.1
समीकरण के दोनों पक्षों को से गुणा करें.
चरण 3.2
समीकरण के दोनों पक्षों को सरल करें.
चरण 3.2.1
बाईं ओर को सरल बनाएंं.
चरण 3.2.1.1
को सरल करें.
चरण 3.2.1.1.1
और को मिलाएं.
चरण 3.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 3.2.2
दाईं ओर को सरल बनाएंं.
चरण 3.2.2.1
को सरल करें.
चरण 3.2.2.1.1
और को मिलाएं.
चरण 3.2.2.1.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 3.2.2.1.3
पदों को सरल करें.
चरण 3.2.2.1.3.1
और को मिलाएं.
चरण 3.2.2.1.3.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 3.2.2.1.3.3
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.2.1.3.3.1
में से का गुणनखंड करें.
चरण 3.2.2.1.3.3.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.2.1.3.3.3
व्यंजक को फिर से लिखें.
चरण 3.2.2.1.4
को के बाईं ओर ले जाएं.
चरण 3.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.4
को सरल करें.
चरण 3.4.1
को के रूप में फिर से लिखें.
चरण 3.4.2
को से गुणा करें.
चरण 3.4.3
भाजक को मिलाएं और सरल करें.
चरण 3.4.3.1
को से गुणा करें.
चरण 3.4.3.2
को के घात तक बढ़ाएं.
चरण 3.4.3.3
को के घात तक बढ़ाएं.
चरण 3.4.3.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 3.4.3.5
और जोड़ें.
चरण 3.4.3.6
को के रूप में फिर से लिखें.
चरण 3.4.3.6.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 3.4.3.6.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.4.3.6.3
और को मिलाएं.
चरण 3.4.3.6.4
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.3.6.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.3.6.4.2
व्यंजक को फिर से लिखें.
चरण 3.4.3.6.5
घातांक का मान ज्ञात करें.
चरण 3.4.4
रेडिकल के लिए उत्पाद नियम का उपयोग करके जोड़ें.
चरण 3.4.5
गुणनखंडों को में पुन: क्रमित करें.
चरण 3.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.5.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 4
समाकलन की संतति को सरल करें.