समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
दोनों पक्षों को से गुणा करें.
चरण 1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2
व्यंजक को फिर से लिखें.
चरण 1.3
समीकरण को फिर से लिखें.
चरण 2
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
बाएं पक्ष का समाकलन करें.
चरण 2.2.1
में से घटाएं.
चरण 2.2.2
मान लीजिए . फिर . और का उपयोग करके फिर से लिखें.
चरण 2.2.2.1
मान लें . ज्ञात करें.
चरण 2.2.2.1.1
को अवकलित करें.
चरण 2.2.2.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2.2.1.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.2.1.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2.1.5
और जोड़ें.
चरण 2.2.2.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.2.3
के संबंध में का इंटीग्रल है.
चरण 2.2.4
की सभी घटनाओं को से बदलें.
चरण 2.3
दाएं पक्ष का समाकलन करें.
चरण 2.3.1
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
चरण 2.3.1.1
मान लें . ज्ञात करें.
चरण 2.3.1.1.1
को अवकलित करें.
चरण 2.3.1.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.1.1.3
का मान ज्ञात करें.
चरण 2.3.1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.1.1.3.3
को से गुणा करें.
चरण 2.3.1.1.4
स्थिरांक नियम का उपयोग करके अंतर करें.
चरण 2.3.1.1.4.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.1.1.4.2
और जोड़ें.
चरण 2.3.1.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.3.2
सरल करें.
चरण 2.3.2.1
को से गुणा करें.
चरण 2.3.2.2
को के बाईं ओर ले जाएं.
चरण 2.3.3
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.4
के संबंध में का इंटीग्रल है.
चरण 2.3.5
सरल करें.
चरण 2.3.6
की सभी घटनाओं को से बदलें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
चरण 3.1
दाईं ओर को सरल बनाएंं.
चरण 3.1.1
और को मिलाएं.
चरण 3.2
लघुगणक वाले सभी पदों को समीकरण के बाईं पक्ष की ओर ले जाएँ.
चरण 3.3
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 3.4
पदों को सरल करें.
चरण 3.4.1
और को मिलाएं.
चरण 3.4.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 3.5
को के बाईं ओर ले जाएं.
चरण 3.6
बाईं ओर को सरल बनाएंं.
चरण 3.6.1
को सरल करें.
चरण 3.6.1.1
न्यूमेरेटर को सरल करें.
चरण 3.6.1.1.1
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 3.6.1.1.2
में निरपेक्ष मान हटा दें क्योंकि सम घात वाले घातांक हमेशा धनात्मक होते हैं.
चरण 3.6.1.1.3
लघुगणक के भागफल गुण का प्रयोग करें.
चरण 3.6.1.2
को के रूप में फिर से लिखें.
चरण 3.6.1.3
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 3.6.1.4
उत्पाद नियम को पर लागू करें.
चरण 3.6.1.5
न्यूमेरेटर को सरल करें.
चरण 3.6.1.5.1
घातांक को में गुणा करें.
चरण 3.6.1.5.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.6.1.5.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.6.1.5.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.6.1.5.1.2.2
व्यंजक को फिर से लिखें.
चरण 3.6.1.5.2
सरल करें.
चरण 3.7
के लिए हल करने के लिए, लघुगणक के गुणों का उपयोग करके समीकरण को फिर से लिखें.
चरण 3.8
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 3.9
के लिए हल करें.
चरण 3.9.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.9.2
दोनों पक्षों को से गुणा करें.
चरण 3.9.3
बाईं ओर को सरल बनाएंं.
चरण 3.9.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.9.3.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.9.3.1.2
व्यंजक को फिर से लिखें.
चरण 3.9.4
समीकरण के दोनों पक्षों से घटाएं.
चरण 4
समाकलन की संतति को सरल करें.